Investigating the Structural, Functional, and Biochemical Properties of PPi -dependent PEPCK Paralogs from Entamoeba histolytica
Image of a sunset overlaid with the CURJ logo and select manuscript titles
PDF

Keywords

Metabolism
Metabolomics
Enzyme Kinetics
Parasite
Enzyme Function

How to Cite

Balamurali, S. (2023). Investigating the Structural, Functional, and Biochemical Properties of PPi -dependent PEPCK Paralogs from Entamoeba histolytica. Cornell Undergraduate Research Journal, 2(2), 52–62. https://doi.org/10.37513/curj.v2i2.740

Abstract

Phosphoenolpyruvate carboxykinase (PEPCK) is an important metabolic enzyme which functions to interconvert oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) in the Krebs cycle, a key process of generating cellular energy. There exist three known classes of PEPCK - two of which are nucleotide-dependent, using ATP and GTP. Very little is known about the third, PPi-dependent PEPCK. Comparing classes, nucleotide-dependent PEPCKs are both functionally and structurally similar (~60-70 kDa) whereas PPi-dependent PEPCK bears significant functional and structural differences (~130 kDa). This presented work investigates PPi-dependent PEPCK from a human parasite Entamoeba histolytica (EhPEPCK). It is unique from previous work done on another homolog from Propionibacterium freudenreichii (PfPEPCK) in that there are three paralogs instead of one. This suggests increased complexity in function and regulation. This work has determined that the interaction between EhPEPCK paralogs gives rise to dimers and heterotrimers, and certain interactions show substrate induced inhibition. Kinetic measurements were completed to determine the metal cofactor of EhPEPCKs, and to determine the kinetic consequences of the aforementioned oligomeric states. The experiments support the conclusion that aggregation causes substrate inhibition, and that dimers are more active than trimers.

https://doi.org/10.37513/curj.v2i2.740
PDF

References

Yang, J., Kalhan, S. C., & Hanson, R. W. (2009a). What is the metabolic role of phosphoenolpyruvate carboxykinase? Journal of Biological Chemistry, 284(40), 27025–27029. https://doi.org/10.1074/jbc.r109.040543

Jeon, J. Y., Lee, H., Park, J., Lee, M., Park, S. W., Kim, J. S., Lee, M., Cho, B. C., Kim, K., Choi, A. M., Kim, C. K., & Yun, M. (2015). The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 463(3), 440–446. https://doi.org/10.1016/j.bbrc.2015.05.103

Méndez-Lucas, A., Hyroššová, P., Novellasdemunt, L., Viñals, F., & Perales, J. C. (2014). Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. Journal of Biological Chemistry, 289(32), 22090–22102. https://doi.org/10.1074/jbc.m114.566927

Montal, E., Dewi, R. E., Bhalla, K., Ou, L., Hwang, B. J., Ropell, A. E., Gordon, C., Liu, W. J., DeBerardinis, R. J., Sudderth, J., Twaddel, W., Boros, L. G., Shroyer, K. R., Duraisamy, S., Drapkin, R., Powers, S., Rohde, J. M., Boxer, M. B., Wong, K., & Girnun, G. D. (2015). PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Molecular Cell, 60(4), 571–583. https://doi.org/10.1016/j.molcel.2015.09.025

Park, J. W., Kim, S. C., Kim, W. K., Hong, J. H., Kim, K., Yeo, H. Y., Lee, J. Y., Kim, M. S., Kim, J. H., Yang, S. Y., Kim, D. Y., Oh, J. H., Cho, J. Y., & Yoo, B. C. (2014). Expression of phosphoenolpyruvate carboxykinase linked to chemoradiation susceptibility of human colon cancer cells. BMC Cancer, 14(1). https://doi.org/10.1186/1471-2407-14-160

Marrero, J., Rhee, K. Y., Schnappinger, D., Pethe, K., & Ehrt, S. (2010). Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9819–9824. https://doi.org/10.1073/pnas.1000715107

Yuan, Y., Hakimi, P., Kao, C., Kao, A., Liu, R., Janocha, A. J., Boyd-Tressler, A., Hao, X. S., Alhoraibi, H., Slater, E., Xia, K., Cao, P., Shue, Q., Ching, T. T., Hsu, A. L., Erzurum, S. C., Dubyak, G. R., Berger, N. A., Hanson, R. W., & Feng, Z. (2016). Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. Journal of Biological Chemistry, 291(3), 1307–1319. https://doi.org/10.1074/jbc.m115.691766

Santra, S., Cameron, J. M., Shyr, C., Zhang, L., Drögemöller, B. I., Ross, C. J., Wasserman, W. W., Wevers, R. A., Rodenburg, R. J., Gupte, G., Preece, M. A., & Van Karnebeek, C. D. (2016). Cytosolic phosphoenolpyruvate carboxykinase deficiency presenting with acute liver failure following gastroenteritis. Molecular Genetics and Metabolism, 118(1), 21–27. https://doi.org/10.1016/j.ymgme.2016.03.001

Yang, J., Kalhan, S. C., & Hanson, R. W. (2009b). What is the metabolic role of phosphoenolpyruvate carboxykinase? Journal of Biological Chemistry, 284(40), 27025–27029. https://doi.org/10.1074/jbc.r109.040543

Chiba, Y., Kamikawa, R., Nakada-Tsukui, K., Saito-Nakano, Y., & Nozaki, T. (2015). Discovery of PPI-type phosphoenolpyruvate carboxykinase genes in eukaryotes and bacteria. Journal of Biological Chemistry, 290(39), 23960–23970. https://doi.org/10.1074/jbc.m115.672907

McLeod, Matthew J. and Holyoak, Todd. (2021) Phosphoenolpyruvate Carboxykinases. Encyclopedia of Biological Chemistry,3rd Edition.vol.3, pp.400–412.Oxford:Elsevier.

Das, B., Tandon, V., Saxena, J. K., Joshi, S., & Singh, A. R. (2012). Purification and characterization of phosphoenolpyruvate carboxykinase fromRaillietina echinobothrida, a cestode parasite of the domestic fowl. Parasitology, 140(1), 136–146. https://doi.org/10.1017/s0031182012001254

Machová, I., Snášel, J., Dostál, J., Brynda, J., Fanfrlík, J., Singh, M., Tarábek, J., Vaněk, O., Bednárová, L., & Pichová, I. (2015). Structural and Functional Studies of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis. PLOS ONE, 10(3), e0120682. https://doi.org/10.1371/journal.pone.0120682

Hebda, C., & Nowak, T. (1982). Phosphoenolpyruvate carboxykinase. Mn2+ and Mn2+ substrate complexes. Journal of Biological Chemistry, 257(10), 5515–5522. https://doi.org/10.1016/s0021-9258(19)83807-3

Hidalgo, J., Latorre, P., Carrodeguas, J. A., Velázquez-Campoy, A., Sancho, J., & López-Buesa, P. (2016). Inhibition of Pig phosphoenolpyruvate carboxykinase isoenzymes by 3-Mercaptopicolinic acid and novel inhibitors. PLOS ONE, 11(7), e0159002. https://doi.org/10.1371/journal.pone.0159002

Sokaribo, A., Novakovski, B., Cotelesage, J. J. H., White, A. P., Sanders, D., & Goldie, H. (2020). Kinetic and structural analysis of Escherichia coli phosphoenolpyruvate carboxykinase mutants. Biochimica Et Biophysica Acta - General Subjects, 1864(4), 129517. https://doi.org/10.1016/j.bbagen.2020.129517

Escós, M., Latorre, P., Hidalgo, J., Hurtado-Guerrero, R., Carrodeguas, J. A., & López-Buesa, P. (2016). Kinetic and functional properties of human mitochondrial phosphoenolpyruvate carboxykinase. Biochemistry and Biophysics Reports, 7, 124–129. https://doi.org/10.1016/j.bbrep.2016.06.007

Wilkes, J. M., Cornish, R., & Mettrick, D. F. (1982). Purification and properties of phosphoenolpyruvate carboxykinase from Ascaris suum. International Journal for Parasitology. https://doi.org/10.1016/0020-7519(82)90012-1

Matte, A., Goldie, H., Sweet, R. M., & Delbaere, L. T. J. (1996). Crystal Structure of Escherichia coli Phosphoenolpyruvate Carboxykinase: A New Structural Family with the P-loop Nucleoside Triphosphate Hydrolase Fold. Journal of Molecular Biology, 256(1), 126–143. https://doi.org/10.1006/jmbi.1996.0072

Holyoak, T., Sullivan, S., & Nowak, T. (2006). Structural Insights into the Mechanism of PEPCK Catalysis,. Biochemistry, 45(27), 8254–8263. https://doi.org/10.1021/bi060269g

Johnson, T. A., & Holyoak, T. (2010). Increasing the conformational entropy of the Ω-Loop lid domain in phosphoenolpyruvate carboxykinase impairs catalysis and decreases catalytic fidelity,. Biochemistry, 49(25), 5176–5187. https://doi.org/10.1021/bi100399e

Siu, P. M. L., Wood, H. G., & Stjernholm, R. (1961). Fixation of CO2 by phosphoenolpyruvic carboxytransphosphorylase. Journal of Biological Chemistry, 236(4), PC21–PC22. https://doi.org/10.1016/s0021-9258(18)64271-1

Lochmüller, H., Wood, H. G., & Davis, J. J. (1966). Phosphoenolpyruvate carboxytransphosphorylase. Journal of Biological Chemistry, 241(23), 5678–5691. https://doi.org/10.1016/s0021-9258(18)96398-2

Willard, J. M., & Rose, I. A. (1973). Formation of enolpyruvate in the phosphoenolpyruvate carboxytransphosphorylase reaction. Biochemistry, 12(26), 5241–5246. https://doi.org/10.1021/bi00750a003

O’Brien, W. E., Singleton, R., & Wood, H. G. (1973). Carboxytransphosphorylase. VII. Phosphoenolpyruvate carboxytransphosphorylase. Investigation of the mechanism with oxygen-18. Biochemistry, 12(26), 5247–5253. https://doi.org/10.1021/bi00750a004

Wood, H. G., Davis, J. J., & Willard, J. M. (1969). Phosphoenolpyruvate carboxytransphosphorylase. V. Mechanism of the reaction and the role of metal ions. Biochemistry, 8(8), 3145–3155. https://doi.org/10.1021/bi00836a003

Haberland, M. E., Willard, J. M., & Wood, H. G. (1972). Phosphoenolpyruvate carboxytransphosphorylase. VI.Catalytic and physical structures. Biochemistry, 11(5), 712–722. https://doi.org/10.1021/bi00755a007

Chou A., Austin R.L., (2022). Entamoeba Histolytica. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 32491650.

Willard, J. M., Davis, J. J., & Wood, H. G. (1969). Phosphoenolpyruvate carboxytransphosphorylase. IV. Requirement for metal cations. Biochemistry, 8(8), 3137–3144. https://doi.org/10.1021/bi00836a002

Fukuda, W., Fukui, T., Atomi, H., & Imanaka, T. (2004). First Characterization of an Archaeal GTP-Dependent Phosphoenolpyruvate Carboxykinase from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 186(14), 4620–4627. https://doi.org/10.1128/jb.186.14.4620-4627.2004

J. B. Hopkins, R. E. Gillilan, and S. Skou. Journal of Applied

Crystallography (2017). 50, 1545-1553. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. doi: 10.1107/S1600576717011438

Manalastas-Cantos, K., Konarev, P. V., Hajizadeh, N. R., Kikhney, A., Petoukhov, M. V., Molodenskiy, D., Panjkovich, A., Mertens, H. D. T., Gruzinov, A., Borges, C., Jeffries, C. M., Svergun, D. I., & Franke, D. (2021). ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. Journal of Applied Crystallography, 54(1), 343–355. https://doi.org/10.1107/s1600576720013412

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Siddhi Balamurali