Serotonin and the Brain


5-HT system

How to Cite

McLaughlin, L. (2023). Serotonin and the Brain: Exploring the 5-HT System’s Role in Depression. Cornell Undergraduate Research Journal, 2(1), 54–74.


Major depressive disorder (MDD) is a highly prevalent and debilitating illness in the modern world. In the 1960s, the theory that low serotonin (5-HT) was a primary cause of MDD emerged due to the efficacy of 5-HT restoring drugs in treating depression. The 5-HT deficiency hypothesis of depression has since been criticized through studies not being able to directly tie low serotonin to MDD. The discovery of the antidepressant efficacy of the glutamatergic priming ketamine led to a reevaluation of depression pathophysiology. Modern perspectives view depression as an issue of disrupted neurocircuitry resulting from stress induced atrophy of certain limbic and cortical brain regions, such as the hippocampus and PFC, and hypertrophy in the fear evaluating amygdala, the reward evaluating nucleus accumbens, and the orbitofrontal cortex. Depression may be treated by supplementing psychotherapy with potentiating neuroplasticity, helping individuals relearn negative emotional associations and restoring dysfunctional neurocircuitry . 5-HT may be viewed as a vulnerability factor in developing depression due to its involvement in stress, as well as a treatment target which indirectly primes neuroplasticity. Other neurotransmitter systems similarly represent depressive risk factors and antidepressant targets, namely the noradrenergic and dopaminergic systems. Serotonergic antidepressants such as Selective Serotonin Reuptake Inhibitors (SSRIs) see high rates of prescription due to their minimal side effects. They demonstrate slower efficacy than ketamine, whose dissociative side effects and potential for abuse are unideal, demanding further research of its mechanism to find safer and more effective antidepressant targets.


Albert PR, and Benkelfat C (2013) The neurobiology of depression-revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos. Trans. R. Soc., B, 368 (1615), 20120535.

Albert PR, Benkelfat C, Descarries L. (2012). The neurobiology of depression--revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond Ser B Biol Sci, 367:2378–81.

Berger M.; Gray J. A.; Roth B. L. (2009). The Expanded Biology of Serotonin. Annu. Rev. Med.; 60, 355–366. 10.1146/

Blier P, El Mansari M. Serotonin and beyond: therapeutics for major depression. (2013). Philos Trans R Soc Lond B Biol Sci.; 368:20120536.

Branchi I, Santarelli S, Capoccia S, et al. (2013). Antidepressant treatment outcome depends on the quality of the living environment: a pre-clinical investigation in mice. PLoS One.;8(4):e62226. doi:10.1371/journal.pone.0062226

Burcusa SL, Iacono WG. (2007). Risk for recurrence in depression. Clin Psychol Rev.; 27(8):959-985. doi:10.1016/j.cpr.2007.02.005

Carhart-Harris RL, Nutt DJ. (2017). Serotonin and brain function: a tale of two receptors. J Psychopharmacol.; 31(9):1091-1120. doi:10.1177/0269881117725915

Celada, P., Bortolozzi, A. & Artigas, F. (2013). Serotonin 5-HT1A Receptors as Targets for Agents to Treat Psychiatric Disorders: Rationale and Current Status of Research. CNS Drugs 27, 703–716.

Charnay Y, Léger L. (2010). Brain serotonergic circuitries. Dialogues Clin Neurosci.;12(4):471-487. doi:10.31887/DCNS.2010.12.4/ycharnay

Christine Heim, D. Jeffrey Newport, Tanja Mletzko, Andrew H. Miller, Charles B. (2008). Nemeroff, The link between childhood trauma and depression: Insights from HPA axis studies in humans, Psychoneuroendocrinology, Volume 33, Issue 6, Pages 693-710, ISSN 0306-4530,

Christoph Kraus, Eero Castrén, Siegfried Kasper, Rupert Lanzenberger. (2017). Serotonin and neuroplasticity – Links between molecular, functional and structural pathophysiology in depression, Neuroscience & Biobehavioral Reviews, Volume 77, Pages 317-326, ISSN 0149-7634,

Coppen A. (1967). The biochemistry of affective disorders. Br J Psychiatry.;113(504):1237–64. 10.1192/bjp.113.504.1237

Cowen P.J., Browning M. (2015). What has serotonin to do with depression? World Psychiatry.;14:158–160. doi: 10.1002/wps.20229.

Deyama S, Duman RS. (2020). Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav.;188:172837. doi:10.1016/j.pbb.2019.172837

Duman CH, Duman RS. (2015). Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett. Aug 5;601:20-9. doi: 10.1016/j.neulet.2015.01.022. Epub 2015 Jan 9. PMID: 25582786; PMCID: PMC4497940.

Edmund T Rolls, Wei Cheng, Jianfeng Feng. (2020). The orbitofrontal cortex: reward, emotion and depression, Brain Communications, Volume 2, Issue 2, fcaa196,

Fava GA. (2003). Can long-term treatment with antidepressant drugs worsen the course of depression? J Clin Psychiatry.; 64(2):123-33. doi: 10.4088/jcp.v64n0204. PMID: 12633120.

Grace, A. (2016). Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17, 524–532.

Hage MP, Azar ST. (2012). The Link between Thyroid Function and Depression. J Thyroid Res. 2012;2012:590648. doi:10.1155/2012/590648

Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. (2021). Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci U S A.;118(17):e2022489118. doi: 10.1073/pnas.2022489118. PMID: 33850049; PMCID: PMC8092378.

Ian Mahar, Francis Rodriguez Bambico, Naguib Mechawar, José N. Nobrega. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects, Neuroscience & Biobehavioral Reviews, Volume 38, Pages 173-192, ISSN 0149-7634,

Ignácio ZM, Réus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J. (2016). New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol.;82(5):1280-1290. doi:10.1111/bcp.12845

Jacobsen JP, Medvedev IO, Caron MG. (2012) The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci, 367:2444–59. 10.1098/rstb.2012.0109

Jans, L., Riedel, W., Markus, C. et al. (2007). Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12, 522–543

Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. (2008). Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med, 5(2):e45. doi:10.1371/journal.pmed.0050045

Kohtala S. (2021). Ketamine-50 years in use: from anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol Rep.;73(2):323-345. doi:10.1007/s43440-021-00232-4

Krishnan V, Nestler EJ. (2010). Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry. 167(11):1305-1320. doi:10.1176/appi.ajp.2009.10030434

Lacasse JR, Leo J. (2005). Serotonin and depression: a disconnect between the advertisements and the scientific literature. PLoS Med.;2:e392.

Leonard, B.E. (2001). Stress, norepinephrine and depression. Journal of psychiatry & neuroscience: JPN, 26(Suppl), p.S11.

Liu B, Liu J, Wang M, et al. (2017). From serotonin to neuroplasticity: evolvement of theories for major depressive disorder. Front Cell Neurosci, 11: 305.

Menke A. (2019). Is the HPA Axis as Target for Depression Outdated, or Is There a New Hope?. Front Psychiatry. 10:101. doi:10.3389/fpsyt.2019.00101

Meyer J, Quenzer L. (2019). Chapter 18: Affective Disorders: Antidepressants and Mood Stabilizers. Psychopharmacology. Sunderland, MA, U.S.A. Sinauer Associates:604-620.

Moret C, Briley M. (2011). The importance of norepinephrine in depression. Neuropsychiatr Dis Treat.;7(Suppl 1):9-13. doi:10.2147/NDT.S19619.

Nautiyal K. M., Hen R. (2017). Serotonin receptors in depression: from A to B. F1000Research 6:123 10.12688/f1000research.9736.1

Nichols, D.E. and Nichols, C.D. (2008). Serotonin receptors. Chemical reviews, 108(5), pp.1614-1641.

Saavedra K, Salazar LA. (2021). Epigenetics: A Missing Link Between Early Life Stress and Depression. Adv Exp Med Biol.; 1305:117-128. doi: 10.1007/978-981-33-6044-0_8. PMID: 33834398.

Schildkraut JJ. (1965). The catecholamine hypothesis of affective disorders: A review of supporting evidence. J Neuropsychiatry Clin Neurosci.; 7:524–533.

Sheffler ZM, Abdijadid S. Antidepressants. (2022). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, Available from:

Taliaz, D., Spinrad, A., Barzilay, R. et al. (2021). Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data. Transl Psychiatry 11, 381.

Vollenweider, F., Kometer, M. (2010). The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11, 642–651.

Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. (2017). Mol Brain, 10(28) doi: 10.1186/s13041-017-0306-y.

Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature.;533:481–486. doi: 10.1038/nature17998. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Liam McLaughlin