Acoustic Variation in Ictalurid Catfishes
PDF

Keywords

acoustic variation
ictalurid catfishes

How to Cite

Lopez Lecorchick, J. R., Flecker, A., & Rice, A. (2023). Acoustic Variation in Ictalurid Catfishes. Cornell Undergraduate Research Journal, 2(1), 41–53. https://doi.org/10.37513/curj.v2i1.714

Abstract

More than 35,000 ray-finned fish (Actinopterygii) species are potentially using acoustic communication. However, of the approximately 1200 known soniferous fish species, few include North American freshwater fish. To help fill this knowledge gap in fish acoustic communication, which holds great promise for conservation monitoring, I document acoustic measurements (duration 90%, bandwidth 90%, number of pulses, center frequency, and peak time) across 4 species (Ameiurus nebulosus, Ameiurus natalis, Noturus flavus, Ictalurus punctatus) from 3 genera of the North American catfish family, Ictaluridae. This was done by recording 10 trials of disturbance calls from 28 individuals and analyzing 1294 sounds using Raven Pro 1.6 software. I hypothesized that: 1) more phylogenetically/morphologically related species would have more similar acoustic features, 2) acoustic features would correlate with one another, and 3) acoustic features would correlate with standard length (cm). For hypothesis 1, I instead found that Ameriurus nebulosus was the most acoustically dissimilar, despite having the highest level of phylogenetic/morphological similarity with Ameirus natalis. However, only Ameriurus nebulosus' number of pulses were significantly different from other species. For hypothesis 2, it was found that many acoustic measurements were correlated with one another as predicted. For hypothesis 3, only the number of pulses was found to be significantly correlated with standard length, but minimally so. These findings further support that pulsation measurements may contain a high level of phylogenetic signal, given that it is the most crucial characteristic to differentiate species. 

https://doi.org/10.37513/curj.v2i1.714
PDF

References

Anderson, K. A., Rountree, R. A., & Juanes, F. (2011). Soniferous fishes in the Hudson River. Transactions of the American Fisheries Society, 137(2), 616–626.

Alexander, R. M. (1966). Structure and function in the catfish. Journal of Zoology, 148(1), 88-152.

Alexander, R. M. (1981). The chordates. CUP Archive.

Arce‐H, M., Lundberg, J. G., & O'Leary, M. A. (2016). Phylogeny of the North American catfish family Ictaluridae (Teleostei: Siluriformes) combining morphology, genes and fossils. Cladistics, 33(4), 406–428.

Browning, Ella, et al. (2017). Acoustic monitoring guide.WWF Conservation Technology Series 1(2). https://www.wwf.org.uk/sites/default/files/2019-04/Acousticmonitoring-WWF-guidelines.pdf.

Cap, H., Deleporte, P., Joachim, J., & Reby, D. (2008). Male vocal behavior and phylogeny in deer. Cladistics, 24(6), 917–931.

Chen, Z., & Wiens, J. J. (2020). The origins of acoustic communication in vertebrates. Nature communications, 11(1), 1-8.

Cocroft, R. B., & Ryan, M. J. (1995). Patterns of advertisement call evolution in toads and chorus frogs. Animal behaviour, 49(2), 283–303.

Connaughton, M. A., Taylor, M. H., & Fine, M. L. (2000). Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation. Journal of Experimental Biology, 203(9), 1503–1512.

Desjonquères, C., Gifford, T., & Linke, S. (2019). Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshwater Biology, 65(1), 7-19.

Fabri, G., Mauguit, Q., Vandewalle, P., & Parmentier, E. (2007). Pectoral sound production in Synodontis (Mochokidae): a morphological study.

Fine, M. L., Friel, J. P., McElroy, D., King, C. B., Loesser, K. E., & Newton, S. (1997). Pectoral spine locking and sound production in the channel catfish Ictalurus punctatus. Copeia, 777-790.

Fish Atlas Maps of New York - NYS Dept. of Environmental Conservation. (n.d.).

Www.dec.ny.gov. Retrieved April 16, 2022, from

https://www.dec.ny.gov/animals/84622.html

Fletcher, N. H. (1992). Acoustic systems in biology. Oxford University Press.

Gainer, H. (1967). Neuromuscular mechanisms of sound production and pectoral spine locking in the banjo catfish, Bunocephalus species. Physiological Zoology, 40(3), 296–306.

Gingras, B., Boeckle, M., Herbst, C. T., & Fitch, W. T. (2013). Call acoustics reflect body size across four clades of anurans. Journal of Zoology, 289(2), 143-150.

Gingras, B., Mohandesan, E., Boko, D., & Fitch, W. (2013). Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans. BMC evolutionary biology, 13(1), 1–12.

Heyd, A., & Pfeiffer, W. (2000). About the sound generation of the catfish (Siluroidei, Ostariophysi, Teleostei) and their connection with phylogeny and the fright reaction. Revue suisse de Zoologie, 107(1).

Horvatić, S., Cavraro, F., Zanella, D., & Malavasi, S. (2016). Sound production in the Ponto-Caspian goby Neogobius fluviatilis and acoustic affinities within the Gobius lineage: implications for phylogeny. Biological Journal of the Linnean Society, 117(3), 564-573.

Libera, M., Passilongo, D., & Reby, D. (2015). Acoustics of male rutting roars in the endangered population of Mesola red deer Cervus elaphus italicus. Mammalian Biology, 80(5), 395-400.

Kaatz, I. M., & Stewart, D. J. (1997). The evolutionary origin and functional divergence of sound production in catfishes: stridulation mechanisms. J. Morphol, 232, 272.

Kaatz I. M., Lobel P. S. (1999). Intra- and interspecific differences in sound production in the Neotropical catfish genus Corydoras (Cal-lichthyidae). Amer. Zool. 41: 1489.

Kaatz, I. M., Stewart, D. J., Rice, A. N., & Lobel, P. S. (2010). Differences in pectoral fin spine morphology between vocal and silent clades of catfishes (order Siluriformes): ecomorphological implications. Current Zoology, 56(1), 73-89.

Kaatz, I. M., & Stewart, D. J. (2012). Bioacoustic variation of swimbladder disturbance sounds in Neotropical doradoid catfishes (Siluriformes: Doradidae, Auchenipteridae): potential morphological correlates. Current Zoology, 58(1), 171-188.

Kasumyan, A. O. (2009). Acoustic signaling in fish. Journal of Ichthyology, 49(11), 963-1020.

Knight, L., & Ladich, F. (2014). Distress sounds of thorny catfishes emitted underwater and in air: characteristics and potential significance. Journal of Experimental Biology. https://doi.org/10.1242/jeb.110957

Ladich, F., Bischof, C., Schleinzer, G., & Fuchs, A. (1992). Intra-and interspecific differences in agonistic vocalization in croaking gouramis (genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics, 4(2), 131-141.

Laiolo, P., & Rolando, A. (2003). The evolution of vocalisations in the genus Corvus: effects of phylogeny, morphology and habitat. Evolutionary Ecology, 17(2), 111-123.

Looby, A., Cox, K., Bravo, S., Rountree, R., Juanes, F., Reynolds, L. K., & Martin, C. W. (2022). A quantitative inventory of global soniferous fish diversity. Reviews in Fish Biology and Fisheries, pp. 1–15.

Malavasi, S., Collatuzzo, S., & Torricelli, P. (2008). Interspecific variation of acoustic signals in Mediterranean gobies (Perciformes, Gobiidae): comparative analysis and evolutionary outlook. Biological Journal of the Linnean Society, 93(4), 763-778.

Marquet, P. A., & Taper, M. A. R. K. (1998). On size and area: patterns of mammalian body size extremes across landmasses. Evolutionary Ecology, 12(2), 127-139.

Matthews, J. N., Rendell, L. E., Gordon, J. C. D., & Macdonald, D. W. (1999). A review of frequency and time parameters of cetacean tonal calls. Bioacoustics, 10(1), 47–71.

Myrberg Jr., A. A. (1972). Ethology of the bicolor damselfish, Eupomacentrus partitus (Pisces: Pomacentridae): a comparative analysis of laboratory and field behaviour. Animal Behaviour Monographs, p. 5, 197-IN2.

Myrberg Jr., A. A., Ha, S. J., & Shamblott, M. J. (1993). The sounds of bicolor damselfish (Pomacentrus partitus): predictors of body size and a spectral basis for individual recognition and assessment. The Journal of the Acoustical Society of America, 94(6), 3067-3070.

Patek, S. N., Shipp, L. E., & Staaterman, E. R. (2009). The acoustics and acoustic behavior of the California spiny lobster (Panulirus interruptus). The Journal of the Acoustical Society of America, 125(5), 3434-3443.

Peters, G., & Tonkin-Leyhausen, B. A. (1999). Evolution of acoustic communication signals of mammals: friendly close-range vocalizations in Felidae (Carnivora). Journal of Mammalian Evolution, 6(2), 129-159.

Pfeiffer, W., & Eisenberg, J. F. (1965). Die lauterzeugung der dornwelse (Doradidae) und der fiederbartwelse (Mochokidae). Zeitschrift für Morphologie und Ökologie der Tiere, 54(6), 669-679.

Rice, A. N., Farina, S. C., Makowski, A. J., Kaataz, I. M., Lobel, P. S., Bemis, W. E., & Bass, A. (2020). Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes. bioRxiv.

Robillard, T., & Desutter-Grandcolas, L. (2004). High-frequency calling in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae): adaptive radiation revealed by phylogenetic analysis. Biological Journal of the Linnean Society, 83(4), 577-584.

Robillard, T., Legendre, F., Desutter‐Grandcolas, L., & Grandcolas, P. (2006). Phylogenetic analysis and alignment of behavioral sequences by direct optimization. Cladistics, 22(6), 602-633.

Rountree, R. A., Bolgan, M., & Juanes, F. (2018). How can we understand freshwater soundscapes without fish sound descriptions? Fisheries, 44(3), 137-143.

Spanier, E. (1979). Aspects of species recognition by sound in four species of damselfishes, genus Eupomacentrus (Pisces: Pomacentridae). Zeitschrift für Tierpsychologie, 51(3), 301-316.

Tavares, E. S., Baker, A. J., Pereira, S. L., & Miyaki, C. Y. (2006). Phylogenetic relationships and historical biogeography of neotropical parrots (Psittaciformes: Psittacidae: Arini) inferred from mitochondrial and nuclear DNA sequences. Systematic Biology, 55(3), 454-470.

Zograf, N., “Music of Nature (Natural Historical Essays). The Second Essay. Music of Water Inhabitants,” Russk. Obozrenie 3, 765–781 (1890).

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Jessica Rose Lopez Lecorchick, Alexander Flecker, Aaron Rice