Investigation of Potassium Tetraborate Resistance in Dickeya spp.
PDF

Keywords

potassium tetraborate resistance
dickeya spp

How to Cite

Lou, A. (2023). Investigation of Potassium Tetraborate Resistance in Dickeya spp. Cornell Undergraduate Research Journal, 2(1), 28–40. https://doi.org/10.37513/curj.v2i1.713

Abstract

Dickeya spp. are common plant pathogens associated with bacterial soft rot, potato blackleg, and slow wilt, which are plant diseases that account for major losses in the agricultural industry. The diseases caused by these bacterial species are not yet fully managed with existing techniques, and new approaches need to be considered to minimize future crop loss. Previous research has shown that the inorganic salt potassium tetraborate tetrahydrate (PTB) can inhibit the growth of Dickeya species; however, disk diffusion assays result in a unique phenotype with two zones of inhibition. This study investigates the effects of PTB on the growth of four Dickeya spp.. It was hypothesized that the production of phage is responsible for the two zones of inhibition. Disk diffusion assays and growth curves were used to confirm the impact of PTB on Dickeya and attempts were made to directly isolate phage from the strains. To elucidate the mechanism of action of PTB, Tn-Seq libraries were used to determine which genes are required for growth in the presence of PTB. Tn-Seq libraries showed that different Dickeya strains shared seven overlapping genes including stress-related genes that increase bacterial resistance to PTB. Gene expression studies were used to determine the changes in gene expression that result from PTB exposure. Preliminary results showed that exposure to PTB induces the expression of stress-related genes in Dickeya to increase survival in the presence of the compound. Further research is needed to better understand the implications of observed changes in bacterial gene expression.

https://doi.org/10.37513/curj.v2i1.713
PDF

References

Phage genomic DNA extraction – modified Promega Wizard method. Cpt.tamu.edu. (2011). Retrieved 17 March 2022, from https://cpt.tamu.edu/wordpress/wp-content/uploads/2011/12/Phage-DNA-extraction-modified-Wizard-method-07-12-20111.pdf.

Protocol for Phage DNA Extraction with Phenol:Chloroform. Cpt.tamu.edu. (2018). Retrieved 17 March 2022, from https://cpt.tamu.edu/wordpress/wp-content/uploads/2018/09/Phage-DNA-Extraction-by-PhenolChloroform-Protocol.pdf.

Adams, M. H. (1959). Concentration and Purification of Phage. In Bacteriophages (pp. 457–360). essay, Interscience Publishers. Retrieved from https://archive.org/details/bacteriophages00adam/mode/2up.

Adriaenssens, E. M., Van Vaerenbergh, J., Vandenheuvel, D., Dunon, V., Ceyssens, P.-J., De Proft, M., Kropinski, A. M., Noben, J.-P., Maes, M., & Lavigne, R. (2012). T4-related bacteriophage limestone isolates for the control of soft rot on potato caused by ‘Dickeya solani.’ PLoS ONE, 7(3), e33227. https://doi.org/10.1371/journal.pone.0033227

Agrios, G. N. (2005). Chapter 12—Plant diseases caused by prokaryotes: Bacteria and mollicutes. In Plant Pathology (5th ed., pp. 615–703). Elsevier Academic Press. http://site.ebrary.com/id/10169629

Ahmed, F. A., Arif, M., & Alvarez, A. M. (2017). Antibacterial Effect of Potassium Tetraborate Tetrahydrate against Soft Rot Disease Agent Pectobacterium carotovorum in Tomato. Frontiers in Microbiology, 8, 1728. https://doi.org/10.3389/fmicb.2017.01728

Andres, D., Hanke, C., Baxa, U., Seul, A., Barbirz, S., & Seckler, R. (2010). Tailspike interactions with lipopolysaccharide effect dna ejection from phage p22 particles in vitro. Journal of Biological Chemistry, 285(47), 36768–36775. https://doi.org/10.1074/jbc.M110.169003

Bertani, G. (1951). Studies on lysogenesis i: The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62(3), 293–300. https://doi.org/10.1128/jb.62.3.293-300.1951

Bondy-Denomy, J., & Davidson, A. R. (2014). When a virus is not a parasite: The beneficial effects of prophages on bacterial fitness. Journal of Microbiology, 52(3), 235–242. https://doi.org/10.1007/s12275-014-4083-3

Bradburn, S. (2020). How to perform the delta-delta CT method. Top Tip Bio. Retrieved March 17, 2022, from https://toptipbio.com/delta-delta-ct-pcr/

Casjens, S. (2003). Prophages and bacterial genomics: What have we learned so far?: Prophage genomics. Molecular Microbiology, 49(2), 277–300. https://doi.org/10.1046/j.1365-2958.2003.03580.x

Çelikezen, F. Ç., Turkez, H., Togar, B., & Izgi, M. S. (2014). DNA damaging and biochemical effects of potassium tetraborate. EXCLI Journal ; Vol. 13, 2014. https://doi.org/10.17877/DE290R-15704

Charkowski, A. O. (2018). The changing face of bacterial soft-rot diseases. Annual Review of Phytopathology, 56(1), 269–288. https://doi.org/10.1146/annurev-phyto-080417-045906

Chowdhury, R., Sahu, G. K., & Das, J. (1996). Stress response in pathogenic bacteria. Journal of Biosciences, 21(2), 149–160. https://doi.org/10.1007/BF02703105

Czajkowski, R. (2016). Bacteriophages of Soft Rot Enterobacteriaceae—A minireview. FEMS Microbiology Letters, 363(2), fnv230. https://doi.org/10.1093/femsle/fnv230

Czajkowski, R. (2019). May the phage be with you? Prophage-like elements in the genomes of soft rot Pectobacteriaceae: Pectobacterium spp. And Dickeya spp. Frontiers in Microbiology, 10, 138. https://doi.org/10.3389/fmicb.2019.00138

Du Toit, A. (2019). Phage induction in different contexts. Nature Reviews Microbiology, 17(3), 126–127. https://doi.org/10.1038/s41579-019-0150-4

Fortier, L.-C., & Sekulovic, O. (2013). Importance of prophages to evolution and virulence of bacterial pathogens. Virulence, 4(5), 354–365. https://doi.org/10.4161/viru.24498

Hacker, J., & Carniel, E. (2001). Ecological fitness, genomic islands and bacterial pathogenicity: A Darwinian view of the evolution of microbes. EMBO Reports, 2(5), 376–381. https://doi.org/10.1093/embo-reports/kve097

He, S. T., Chen, T. T., Xu, X. B., Zhang, Z. K., Song, H. C., Song, H. M., Meng, L. H., Zhou, P., & Shi, X. Q. (2019). Proteomic analysis of the mango anthracnose pathogen Colletotrichum gloeosporioides treated with borate highlights distinct mitochondrial response mechanisms. Plant Pathology, 68(7), 1369–1380. https://doi.org/10.1111/ppa.13058

Helmann, T. C., Filiatrault, M. J., & Stodghill, P. V. (2022). Genome-wide identification of genes important for growth of Dickeya dadantii and Dickeya dianthicola in potato (Solanum tuberosum) tubers. Frontiers in Microbiology, 13. https://www.frontiersin.org/article/10.3389/fmicb.2022.778927

Liu, Y., & Filiatrault, M. J. (2020). Antibacterial activity and mode of action of potassium tetraborate tetrahydrate against soft-rot bacterial plant pathogens. Microbiology, 166(9), 837–848. https://doi.org/10.1099/mic.0.000948

Mantsebo, C. C., Mazarura, U., Goss, M., & Ngadze, E. (2014). The epidemiology of Pectobacterium and Dickeya species and the role of calcium in postharvest soft rot infection of potato (Solanum tuberosum) caused by the pathogens: A review. African Journal of Agricultural Research, 9(19), 1509–1515. https://doi.org/10.5897/AJAR2013.8558

Nanda, A. M., Thormann, K., & Frunzke, J. (2015). Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. Journal of Bacteriology, 197(3), 410–419. https://doi.org/10.1128/JB.02230-14

Olsen, N., & Nolte, P. (2011, June). Cleaning and Disinfecting Potato Equipment and Storage Facilities. CIS 1180; University of Idaho Extension. https://seedcert.oregonstate.edu/sites/seedcert.oregonstate.edu/files/pdfs/cis1180.pdf

Poole K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. The Journal of antimicrobial chemotherapy, 67(9), 2069–2089. https://doi.org/10.1093/jac/dks196

Qin, G., Zong, Y., Chen, Q., Hua, D., & Tian, S. (2010). Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. International journal of food microbiology, 138(1-2), 145–150. https://doi.org/10.1016/j.ijfoodmicro.2009.12.018

Resibois, A., Colet, M., Faelen, M., Schoonejans, E., & Toussaint, A. (1984). ΦEC2, a new generalized transducing phage of Erwinia chrysanthemi. Virology, 137(1), 102–112. https://doi.org/10.1016/0042-6822(84)90013-8

Toth, I. K., Barny, M., Brurberg, M. B., Condemine, G., Czajkowski, R., Elphinstone, J. G., Helias, V., Johnson, S. B., Moleleki, L. N., Pirhonen, M., Rossmann, S., Tsror, L., van der Waals, J. E., van der Wolf, J. M., Van Gijsegem, F., & Yedidia, I. (2021). Pectobacterium and Dickeya: Environment to disease development. In F. Van Gijsegem, J. M. van der Wolf, & I. K. Toth (Eds.), Plant Diseases Caused by Dickeya and Pectobacterium Species (pp. 39–84). Springer International Publishing. https://doi.org/10.1007/978-3-030-61459-1_3

Toth, I. K., van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., Tsror Lahkim, L., & Elphinstone, J. G. (2011). Dickeya species: An emerging problem for potato production in Europe: Dickeya spp. on potato in Europe. Plant Pathology, 60(3), 385–399. https://doi.org/10.1111/j.1365-3059.2011.02427.x

van der Wolf, J. M., De Boer, S. H., Czajkowski, R., Cahill, G., Van Gijsegem, F., Davey, T., Dupuis, B., Ellicott, J., Jafra, S., Kooman, M., Toth, I. K., Tsror, L., Yedidia, I., & van der Waals, J. E. (2021). Management of diseases caused by Pectobacterium and Dickeya species. In F. Van Gijsegem, J. M. van der Wolf, & I. K. Toth (Eds.), Plant Diseases Caused by Dickeya and Pectobacterium Species (pp. 175–214). Springer International Publishing. https://doi.org/10.1007/978-3-030-61459-1_6

Varani, A. M., Monteiro-Vitorello, C. B., Nakaya, H. I., & Van Sluys, M.-A. (2013). The role of prophage in plant-pathogenic bacteria. Annual Review of Phytopathology, 51(1), 429–451. https://doi.org/10.1146/annurev-phyto-081211-173010

Wetmore, K. M., Price, M. N., Waters, R. J., Lamson, J. S., He, J., Hoover, C. A., Blow, M. J., Bristow, J., Butland, G., Arkin, A. P., & Deutschbauer, A. (2015). Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. MBio, 6(3), e00306-15. https://doi.org/10.1128/mBio.00306-15

Yaganza, E.-S., Tweddell, R. J., & Arul, J. (2009). Physicochemical Basis for the Inhibitory Effects of Organic and Inorganic Salts on the Growth of Pectobacterium carotovorum subsp. Carotovorum and Pectobacterium atrosepticum. Applied and Environmental Microbiology, 75(5), 1465–1469. https://doi.org/10.1128/AEM.02447-08

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Alice Lou