Abstract
Mitochondria are important for cellular function, and as cells divide, their mitochondria also divide by replicating their DNA. The integrity of mitochondria DNA (mtDNA) replication, carried out by Polymerase G (PolG), is critical for the maintenance of mitochondria and their functions. In this study, mice carrying a mutant PolG, PolGD257A, were used to determine the effect of increased mtDNA mutations on the macrophage population and polarization in response to bacterial and cytokine challenge. It was hypothesized that increased mtDNA mutations will inhibit pathogen clearance by macrophages. To test this hypothesis, the PolGD257A mice were used, along with Listeria monocytogenes (LM) as a model of bacterial infection. Three days post LM infection, the bacterial load and the macrophage population was determined in the spleen and liver of PolGD257A and WT mice. No statistical difference was observed in the bacterial load in the liver or spleen, or in the macrophage population in the spleen of the PolGD257A and WT mice. However, the PolGD257A/D257A mice were associated with a higher percentage of macrophages in the liver during LM infection. Polarization of peritoneal macrophages into classically activated (M1) and alternatively activated (M2) macrophages was also studied in vitro. In a single experiment, increased mtDNA mutations in PolGD257A mice seemed to elicit increased M1 and decreased M2 macrophage polarization. Replication of the experiment is warranted to confirm these results. These experimental findings could lead to a better understanding of the role of the mitochondria and macrophages in infectious disease.
References
Abuaita, B., Schultz, T., & O’Riordan, M. (2018). Mitochondria-derived vesicles deliver
antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus. Cell host & microbe, 24(5), 625–636.e5. https://doi.org/10.1016/j.chom.2018.10.005
Adesso, S., Popolo, A., Bianco, G., Sorrentino, R., Pinto, A., Autore, G., & Marzocco, S. (2013).
The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PloS one, 8(9), e76778. https://doi.org/10.1371/journal.pone.0076778
Alam, M., Cavanaugh, C., Pereira, M., Babu, U., & Williams, K. (2020). Susceptibility of aging
mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. International journal of medical microbiology: IJMM, 310(2), 151397. https://doi.org/10.1016/j.ijmm.2020.151397
Alatery, A., & Basta, S. (2008). An efficient culture method for generating large quantities of
mature mouse splenic macrophages. Journal of immunological methods, 338(1-2), 47–57. https://doi.org/10.1016/j.jim.2008.07.009
Anders, C., Lawton, T., Smith, H., Garret, J., Doucette, M., & Ammons, M. (2022). Use of
integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes. Journal of leukocyte biology, 111(3), 667–693. https://doi.org/10.1002/JLB.6A1120-744R
Angajala, A., Lim, S., Phillips, J., Kim, J., Yates, C., You, Z., & Tan, M. (2018). Diverse Roles of
Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Frontiers in immunology, 9, 1605. https://doi.org/10.3389/fimmu.2018.01605
Bloomer, S., Moyer, E., Brown, K., & Kregel, K. (2020). Aging results in accumulation of M1
and M2 hepatic macrophages and a differential response to gadolinium chloride. Histochemistry and cell biology, 153(1), 37–48. https://doi.org/10.1007/s00418-019-01827-y
Cassado, A., D'Império Lima, M., & Bortoluci, K. (2015). Revisiting mouse peritoneal
macrophages: heterogeneity, development, and function. Frontiers in immunology, 6, 225. https://doi.org/10.3389/fimmu.2015.00225
CDC. (2020). Listeria (Listeriosis). Center for Disease Control and Prevention.
https://www.cdc.gov/listeria/index.html
Cheng, M., Chen, C., Engström, P., Portnoy, D., & Mitchell, G. (2018). Actin-based motility
allows Listeria monocytogenes to avoid autophagy in the macrophage cytosol. Cellular microbiology, 20(9), e12854. https://doi.org/10.1111/cmi.12854
Covarrubias, A., Kale, A., Perrone, R., Lopez-Dominguez, J., Pisco, A., Kasler, H., Schmidt, M.,
Heckenbach, I., Kwok, R., Wiley, C., Wong, H., Gibbs, E., Iyer, S., Basisty, N., Wu, Q., Kim, I., Silva, E., Vitangcol, K., Shin, K., Lee, Y., … Verdin, E. (2020). Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature metabolism, 2(11), 1265–1283. https://doi.org/10.1038/s42255-020-00305-3
Eitel, J., Suttorp, N., & Opitz, B. (2011). Innate immune recognition and inflammasome activation
in listeria monocytogenes infection. Frontiers in microbiology, 1, 149. https://doi.org/10.3389/fmicb.2010.00149
Gahl, W. (2019). Mitochondrial DNA. National Human Genome Research Institute.
https://www.genome.gov/genetics-glossary/Mitochondrial-DNA.
Jeong, Y., Walsh, M., Yu, J., Shen, H., Wherry, E., & Choi, Y. (2020). Mice Lacking the
Purinergic Receptor P2X5 Exhibit Defective Inflammasome Activation and Early Susceptibility to Listeria monocytogenes. Journal of immunology (Baltimore, Md.: 1950), 205(3), 760–766. https://doi.org/10.4049/jimmunol.1901423
Kim, I., Kisseleva, T., & Brenner, D. (2015). Aging and liver disease. Current opinion in
gastroenterology, 31(3), 184–191. https://doi.org/10.1097/MOG.0000000000000176
Kujoth, G., Hiona, A., Pugh, T., Someya, S., Panzer, K., Wohlgemuth, S., Hofer, T., Seo, A.,
Sullivan, R., Jobling, W., Morrow, J., Van Remmen, H., Sedivy, J., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., & Prolla, T. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science (New York, N.Y.), 309(5733), 481–484. https://doi.org/10.1126/science.1112125
Linehan, E., & Fitzgerald, D. (2015). Ageing and the immune system: focus on macrophages.
European journal of microbiology & immunology, 5(1), 14–24. https://doi.org/10.1556/EUJMI-D-14-00035
Nguyen, B., Peterson, B., & Portnoy, D. (2019). Listeriolysin O: A phagosome-specific cytolysin
revisited. Cellular microbiology, 21(3), e12988. https://doi.org/10.1111/cmi.12988
Ramond, E., Jamet, A., Coureuil, M., & Charbit, A. (2019). Pivotal Role of Mitochondria in
Macrophage Response to Bacterial Pathogens. Frontiers in immunology, 10, 2461. https://doi.org/10.3389/fimmu.2019.02461
Rőszer T. (2015). Understanding the Mysterious M2 Macrophage through Activation Markers and
Effector Mechanisms. Mediators of inflammation, 2015, 816460. https://doi.org/10.1155/2015/816460
Stahl, E., Delgado, E., Alencastro, F., LoPresti, S., Wilkinson, P., Roy, N., Haschak, M., Skillen,
C., Monga, S., Duncan, A., & Brown, B. (2020). Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by CCR2. The American journal of pathology, 190(2), 372–387. https://doi.org/10.1016/j.ajpath.2019.10.016
Tan, Z., Xie, N., Cui, H., Moellering, D., Abraham, E., Thannickal, V., & Liu, G. (2015). Pyruvate
dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. Journal of immunology (Baltimore, Md.: 1950), 194(12), 6082–6089. https://doi.org/10.4049/jimmunol.1402469
Thiriot, J., Martinez-Martinez, Y., Endsley, J., & Torres, A. (2020). Hacking the host: exploitation
of macrophage polarization by intracellular bacterial pathogens. Pathogens and disease, 78(1), ftaa009. https://doi.org/10.1093/femspd/ftaa009.
Van den Bossche, J., Baardman, J., Otto, N., van der Velden, S., Neele, A., van den Berg, S.,
Luque-Martin, R., Chen, H., Boshuizen, M., Ahmed, M., Hoeksema, M., de Vos, A., & de Winther, M., (2016). Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell reports, 17(3), 684–696. https://doi.org/10.1016/j.celrep.2016.09.008
Wang, W., Zhao, F., Ma, X., Perry, G., & Zhu, X. (2020). Mitochondria dysfunction in the
pathogenesis of Alzheimer's disease: recent advances. Molecular neurodegeneration, 15(1), 30. https://doi.org/10.1186/s13024-020-00376-6
Wellcome. (2007). RT-PCR Protocol. Wellcome Sanger Trust Institute –
ftp://ftp.sanger.ac.uk/pub/resources/mouse/sigtr/RTPCR.pdf
WHO. (2018). Listeriosis. World Health Organization
https://www.who.int/news-room/fact-sheets/detail/listeriosis
Wu, C., Xue, Y., Wang, P., Lin, L., Liu, Q., Li, N., Xu, J., & Cao, X. (2014). IFN-γ primes
macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. Journal of immunology (Baltimore, Md.: 1950), 193(6), 3036–3044. https://doi.org/10.4049/jimmunol.1302379
Yarbro, J., Emmons, R., & Pence, B. (2020). Macrophage Immunometabolism and Inflammaging:
Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. Immunometabolism, 2(3), e200026. https://doi.org/10.20900/immunometab20200026
Yao, Y., Xu, X., & Jin, L. (2019). Macrophage Polarization in Physiological and Pathological
Pregnancy. Frontiers in immunology, 10, 792. https://doi.org/10.3389/fimmu.2019.00792
Zenewicz, L., & Shen, H. (2007). Innate and adaptive immune responses to Listeria
monocytogenes: a short overview. Microbes and infection, 9(10), 1208–1215. https://doi.org/10.1016/j.micinf.2007.05.008
Zhang, L., Chan, S., & Wolff, D. (2011). Mitochondrial disorders of DNA polymerase γ
dysfunction: from anatomic to molecular pathology diagnosis. Archives of pathology & laboratory medicine, 135(7), 925–934. https://doi.org/10.5858/2010-0356-RAR.1
Zhang, T., Abel, S., Abel Zur Wiesch, P., Sasabe, J., Davis, B., Higgins, D., & Waldor, M. (2017).
Deciphering the landscape of host barriers to Listeria monocytogenes infection. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6334–6339. https://doi.org/10.1073/pnas.1702077114
Zhao, Y., Tian, P., Han, F., Zheng, J., Xia, X., Xue, W., Ding, X., & Ding, C. (2017). Comparison
of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow. Journal of Zhejiang University. Science. B, 18(12), 1055–1063. https://doi.org/10.1631/jzus.B1700003
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Narda Bondah