Effects of Increased Mitochondrial DNA Mutation on the Macrophage Response to Listeria Monocytogenes


Listeria monocytogenes
mitochondrial DNA mutation
macrophage response

How to Cite

Bondah, N. (2023). Effects of Increased Mitochondrial DNA Mutation on the Macrophage Response to Listeria Monocytogenes. Cornell Undergraduate Research Journal, 2(1), 4–16. https://doi.org/10.37513/curj.v2i1.712


Mitochondria are important for cellular function, and as cells divide, their mitochondria also divide by replicating their DNA. The integrity of mitochondria DNA (mtDNA) replication, carried out by Polymerase G (PolG), is critical for the maintenance of mitochondria and their functions. In this study, mice carrying a mutant PolG, PolGD257A, were used to determine the effect of increased mtDNA mutations on the macrophage population and polarization in response to bacterial and cytokine challenge. It was hypothesized that increased mtDNA mutations will inhibit pathogen clearance by macrophages. To test this hypothesis, the PolGD257A mice were used, along with Listeria monocytogenes (LM) as a model of bacterial infection. Three days post LM infection, the bacterial load and the macrophage population was determined in the spleen and liver of PolGD257A and WT mice. No statistical difference was observed in the bacterial load in the liver or spleen, or in the macrophage population in the spleen of the PolGD257A and WT mice. However, the PolGD257A/D257A mice were associated with a higher percentage of macrophages in the liver during LM infection. Polarization of peritoneal macrophages into classically activated (M1) and alternatively activated (M2) macrophages was also studied in vitro. In a single experiment, increased mtDNA mutations in PolGD257A mice seemed to elicit increased M1 and decreased M2 macrophage polarization. Replication of the experiment is warranted to confirm these results. These experimental findings could lead to a better understanding of the role of the mitochondria and macrophages in infectious disease.



Abuaita, B., Schultz, T., & O’Riordan, M. (2018). Mitochondria-derived vesicles deliver

antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus. Cell host & microbe, 24(5), 625–636.e5. https://doi.org/10.1016/j.chom.2018.10.005

Adesso, S., Popolo, A., Bianco, G., Sorrentino, R., Pinto, A., Autore, G., & Marzocco, S. (2013).

The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PloS one, 8(9), e76778. https://doi.org/10.1371/journal.pone.0076778

Alam, M., Cavanaugh, C., Pereira, M., Babu, U., & Williams, K. (2020). Susceptibility of aging

mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. International journal of medical microbiology: IJMM, 310(2), 151397. https://doi.org/10.1016/j.ijmm.2020.151397

Alatery, A., & Basta, S. (2008). An efficient culture method for generating large quantities of

mature mouse splenic macrophages. Journal of immunological methods, 338(1-2), 47–57. https://doi.org/10.1016/j.jim.2008.07.009

Anders, C., Lawton, T., Smith, H., Garret, J., Doucette, M., & Ammons, M. (2022). Use of

integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes. Journal of leukocyte biology, 111(3), 667–693. https://doi.org/10.1002/JLB.6A1120-744R

Angajala, A., Lim, S., Phillips, J., Kim, J., Yates, C., You, Z., & Tan, M. (2018). Diverse Roles of

Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Frontiers in immunology, 9, 1605. https://doi.org/10.3389/fimmu.2018.01605

Bloomer, S., Moyer, E., Brown, K., & Kregel, K. (2020). Aging results in accumulation of M1

and M2 hepatic macrophages and a differential response to gadolinium chloride. Histochemistry and cell biology, 153(1), 37–48. https://doi.org/10.1007/s00418-019-01827-y

Cassado, A., D'Império Lima, M., & Bortoluci, K. (2015). Revisiting mouse peritoneal

macrophages: heterogeneity, development, and function. Frontiers in immunology, 6, 225. https://doi.org/10.3389/fimmu.2015.00225

CDC. (2020). Listeria (Listeriosis). Center for Disease Control and Prevention.


Cheng, M., Chen, C., Engström, P., Portnoy, D., & Mitchell, G. (2018). Actin-based motility

allows Listeria monocytogenes to avoid autophagy in the macrophage cytosol. Cellular microbiology, 20(9), e12854. https://doi.org/10.1111/cmi.12854

Covarrubias, A., Kale, A., Perrone, R., Lopez-Dominguez, J., Pisco, A., Kasler, H., Schmidt, M.,

Heckenbach, I., Kwok, R., Wiley, C., Wong, H., Gibbs, E., Iyer, S., Basisty, N., Wu, Q., Kim, I., Silva, E., Vitangcol, K., Shin, K., Lee, Y., … Verdin, E. (2020). Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature metabolism, 2(11), 1265–1283. https://doi.org/10.1038/s42255-020-00305-3

Eitel, J., Suttorp, N., & Opitz, B. (2011). Innate immune recognition and inflammasome activation

in listeria monocytogenes infection. Frontiers in microbiology, 1, 149. https://doi.org/10.3389/fmicb.2010.00149

Gahl, W. (2019). Mitochondrial DNA. National Human Genome Research Institute.


Jeong, Y., Walsh, M., Yu, J., Shen, H., Wherry, E., & Choi, Y. (2020). Mice Lacking the

Purinergic Receptor P2X5 Exhibit Defective Inflammasome Activation and Early Susceptibility to Listeria monocytogenes. Journal of immunology (Baltimore, Md.: 1950), 205(3), 760–766. https://doi.org/10.4049/jimmunol.1901423

Kim, I., Kisseleva, T., & Brenner, D. (2015). Aging and liver disease. Current opinion in

gastroenterology, 31(3), 184–191. https://doi.org/10.1097/MOG.0000000000000176

Kujoth, G., Hiona, A., Pugh, T., Someya, S., Panzer, K., Wohlgemuth, S., Hofer, T., Seo, A.,

Sullivan, R., Jobling, W., Morrow, J., Van Remmen, H., Sedivy, J., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., & Prolla, T. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science (New York, N.Y.), 309(5733), 481–484. https://doi.org/10.1126/science.1112125

Linehan, E., & Fitzgerald, D. (2015). Ageing and the immune system: focus on macrophages.

European journal of microbiology & immunology, 5(1), 14–24. https://doi.org/10.1556/EUJMI-D-14-00035

Nguyen, B., Peterson, B., & Portnoy, D. (2019). Listeriolysin O: A phagosome-specific cytolysin

revisited. Cellular microbiology, 21(3), e12988. https://doi.org/10.1111/cmi.12988

Ramond, E., Jamet, A., Coureuil, M., & Charbit, A. (2019). Pivotal Role of Mitochondria in

Macrophage Response to Bacterial Pathogens. Frontiers in immunology, 10, 2461. https://doi.org/10.3389/fimmu.2019.02461

Rőszer T. (2015). Understanding the Mysterious M2 Macrophage through Activation Markers and

Effector Mechanisms. Mediators of inflammation, 2015, 816460. https://doi.org/10.1155/2015/816460

Stahl, E., Delgado, E., Alencastro, F., LoPresti, S., Wilkinson, P., Roy, N., Haschak, M., Skillen,

C., Monga, S., Duncan, A., & Brown, B. (2020). Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by CCR2. The American journal of pathology, 190(2), 372–387. https://doi.org/10.1016/j.ajpath.2019.10.016

Tan, Z., Xie, N., Cui, H., Moellering, D., Abraham, E., Thannickal, V., & Liu, G. (2015). Pyruvate

dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. Journal of immunology (Baltimore, Md.: 1950), 194(12), 6082–6089. https://doi.org/10.4049/jimmunol.1402469

Thiriot, J., Martinez-Martinez, Y., Endsley, J., & Torres, A. (2020). Hacking the host: exploitation

of macrophage polarization by intracellular bacterial pathogens. Pathogens and disease, 78(1), ftaa009. https://doi.org/10.1093/femspd/ftaa009.

Van den Bossche, J., Baardman, J., Otto, N., van der Velden, S., Neele, A., van den Berg, S.,

Luque-Martin, R., Chen, H., Boshuizen, M., Ahmed, M., Hoeksema, M., de Vos, A., & de Winther, M., (2016). Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell reports, 17(3), 684–696. https://doi.org/10.1016/j.celrep.2016.09.008

Wang, W., Zhao, F., Ma, X., Perry, G., & Zhu, X. (2020). Mitochondria dysfunction in the

pathogenesis of Alzheimer's disease: recent advances. Molecular neurodegeneration, 15(1), 30. https://doi.org/10.1186/s13024-020-00376-6

Wellcome. (2007). RT-PCR Protocol. Wellcome Sanger Trust Institute –


WHO. (2018). Listeriosis. World Health Organization


Wu, C., Xue, Y., Wang, P., Lin, L., Liu, Q., Li, N., Xu, J., & Cao, X. (2014). IFN-γ primes

macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. Journal of immunology (Baltimore, Md.: 1950), 193(6), 3036–3044. https://doi.org/10.4049/jimmunol.1302379

Yarbro, J., Emmons, R., & Pence, B. (2020). Macrophage Immunometabolism and Inflammaging:

Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. Immunometabolism, 2(3), e200026. https://doi.org/10.20900/immunometab20200026

Yao, Y., Xu, X., & Jin, L. (2019). Macrophage Polarization in Physiological and Pathological

Pregnancy. Frontiers in immunology, 10, 792. https://doi.org/10.3389/fimmu.2019.00792

Zenewicz, L., & Shen, H. (2007). Innate and adaptive immune responses to Listeria

monocytogenes: a short overview. Microbes and infection, 9(10), 1208–1215. https://doi.org/10.1016/j.micinf.2007.05.008

Zhang, L., Chan, S., & Wolff, D. (2011). Mitochondrial disorders of DNA polymerase γ

dysfunction: from anatomic to molecular pathology diagnosis. Archives of pathology & laboratory medicine, 135(7), 925–934. https://doi.org/10.5858/2010-0356-RAR.1

Zhang, T., Abel, S., Abel Zur Wiesch, P., Sasabe, J., Davis, B., Higgins, D., & Waldor, M. (2017).

Deciphering the landscape of host barriers to Listeria monocytogenes infection. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6334–6339. https://doi.org/10.1073/pnas.1702077114

Zhao, Y., Tian, P., Han, F., Zheng, J., Xia, X., Xue, W., Ding, X., & Ding, C. (2017). Comparison

of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow. Journal of Zhejiang University. Science. B, 18(12), 1055–1063. https://doi.org/10.1631/jzus.B1700003

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Narda Bondah