Co-diversification of Camponotus and Its Primary Endosymbiont *Blochmannia* in the USA

By Steven Wang, Dr. Manuela de O. Ramalho
Department of Entomology, College of Agriculture and Life Sciences

Abstract

Blochmannia is a primary intracellular endosymbiotic bacteria found within the ant tribe Camponotini (Family Formicidae: subfamily Formicinae). *Blochmannia* is transmitted vertically through maternal host lineages and synthesizes essential amino acids for its host species. The high fidelity of vertical transmission observed means that close co-diversification is expected between *Blochmannia* and their Camponotini hosts. This study expands on past data on USA Camponotini-*Blochmannia* associations and adds 23 new species to the host COI mitochondrial phylogeny and the 16S ribosomal DNA bacterial phylogeny. Using statistical analyses we found evidence of *Blochmannia* co-diversification with the host with enhanced species coverage, and one clear host shift is documented.

Keywords: horizontal transmission, phylogeny, symbiosis

Introduction

Many insects have ‘primary’ endosymbionts that are closely linked to host survival and fecundity. Primary endosymbionts often show very close diversification with their hosts, in which case their respective phylogenies will be congruent (Baumann & Baumann 2005, Moran et al. 1993, Munson et al. 1991, Spaulding & von Dohlen 2001, Thao et al. 2000). Vertical transmission can lead to co-diversification as host and endosymbiont. Taxonomic groups that have extensive co-diversification with primary symbionts are often much more diverse than their sister taxa, as in the case of the Order Hemiptera within the Superorder A cercaria (Johnson et al. 2018). Here we focus on the co-diversification of the endosymbiotic bacteria *Blochmannia* found in the ant tribe Camponotini (Family Formicidae: subfamily Formicinae).

There have been extensive studies on the co-diversification of bacteria and their ant hosts in another bacterial genus *Wolbachia*. Unlike *Blochmannia*, *Wolbachia* is found widely across Insecta and does not always have perfect vertical transmission, and does not show close co-diversification. *Wolbachia* is a commonly found endosymbiont in ants, including Camponotus (Russel 2012). There are many documented cases of horizontal *Wolbachia* transmission within Hymenoptera (Gerth et al. 2013, Raychoudhury et al. 2009, Tseng et al. 2019), including ants (Boivin et al. 2014, Frost et al. 2010, Tolley et al. 2019). This contrasts with *Blochmannia*, in which the existence of horizontal transmission has been suggested (Degnan et al. 2004) but has not been observed experimentally (Ramalho et al. 2017, Saur et al. 2000).

Blochmannia

Blochmannia is an endosymbiotic bacteria that resides in bacteriocytes (Saur et al. 2002) of its host ants. It was discovered to reside in the midgut lining of all castes and the ovarioles of *Camponotus* (Blochmann 1887, Saur et al. 2000). Their proximity to the ovarioles plays a direct role in their vertical transmission (Ramalho 2018). The common ancestor of *Blochmannia* was likely horizontally transferred from hemipterans (Gil et al. 2003, Rafiqi 2020, Ward et al. 2016, Wernegreen et al. 2009). They are endemic endosymbionts to the Camponotini clade of ants and likely play a nutritional synthesis role, providing hosts with vitamins (Degnan et al. 2005, Gil et al. 2003).
Nutritional endosymbionts are often found in herbivorous taxa and can help the host synthesize nutrients missing in their diet (Baumann et al. 2006, Feldhaar & Gross 2009). This can help the host species expand to new niches previously inaccessible due to a lack of nutrients. Blochmannia crosses over to the next generation in the egg (Rafiqi 2020, Ramalho et al. 2018), where they contribute to larval nutrition and survival, especially in the absence of essential amino acids (Feldhaar 2007). Camponotus are known to be omnivorous but have a lower 15N/14N ratio than other ants, which indicates a diet skewed towards herbivory (Moreau 2020). There is evidence that many Blochmannia supply their Camponotini hosts with riboflavin and vitamin B6 (Williams & Wernegreen 2015), which the ants may lack in their plant-heavy diet.

Perfect co-diversification between Camponotus and their endosymbiont Blochmannia has been observed in analyses with fewer species (Degnan et al. 2004). The purpose of this study is to generate new host and endosymbiont sequence data for USA Camponotini-Blochmannia relationships and use the larger dataset to test if co-diversification is still supported. To accomplish this, Camponotini were collected from the continental USA. We then sequenced and reconstructed phylogenies of host COI mitochondrial DNA and endosymbiont Blochmannia 16S rDNA using maximum-likelihood and Bayesian methods. COI mitochondrial and 16S rDNA genes were chosen for their known phylogenetic signal and cost-effectiveness (Mardulyn & Whitfield 1999, Nunez & Oleksiak 2016).

Materials and Methods

Collection of Specimens
Ants were collected during June 2021 from various sites in the USA. Ten species were collected by S. Wang from sites in the states of New Mexico, Texas, Louisiana, Mississippi, and Pennsylvania. An additional 11 species were collected by collaborators in Texas, Florida, and Arizona (see Table 1). Ants were collected directly into 95% EtOH. These samples were combined with the 16 species sequenced in Degnan et al. 2004, and unpublished data from Schluns et al., which brings this study to a total of 39 sequenced Camponotini. This makes up 62% of the 63 species of valid extant Camponotini species present in the continental USA. Vouchers were point mounted and identified to species with keys (Macgown n.d., Hansen & Klotz 2005, Snelling 2006, Snelling 1988) and deposited in the Cornell University Insect Collection (CUIC) under voucher numbers CUIC000007039-CUIC000007062.

DNA Isolation
Ant petiole + gaster segments were dissected for genetic analysis. These dissected samples were rinsed for 10 seconds each in 95% ethanol, 10% bleach, and pure water. Each cleaned sample was placed in a 1.5mL tube with a ceramic bead. The OMNI Bead Mill Homogenizer was used to homogenize the samples. Samples were checked visually, and sterile pipette tips were used to crush any remaining large tissue pieces. Vials were incubated with the lysis buffer at 56°C overnight in a VWR hybridization oven. Genomic DNA was then extracted from the samples using a Qiagen DNEasy™ DNA extraction kit (Qiagen Inc., Valencia, CA), according to the manufacturer protocols.

Polymerase Chain Reaction (PCR) Amplification
PCR reactions were performed in 0.2mL strip tubes, each with 5.5µL water, 12.5µL Taq PLUS Master Mix (Invitrogen, Waltham, MA), 2.5µL 10mM forward primer, 2.5µL 10mM reverse primer, 1.0µL bovine serum albumin (BSA) from Thermo Scientific (Thermo Scientific, Vilnius, LT), and 1.0µL DNA product from the Qiagen DNEasy™(Qiagen Inc., Valencia, CA) extraction. CAS 7732-18-5 Molecular Biology Water was obtained from VWR Life Sciences (VWR Chemicals, LLC, Solon, OH) and UV sterilized for 10 min. before use.

The primers C1-J-1754F, C1F356F, and C2-N-3661R (Integrated DNA Technologies, Inc., Coralville, IA) were used to amplify the COI/II
mitochondrial genes (Simon et al. 1994, Degnan et al. 2004, Gómez-Valero 2008, Wernegreen et al. 2009). However, when the primers were used with the same methods in the referenced papers, they failed to produce adequate concentrations of PCR product. Instead, LCO-1490 and HCO-2198 primers were used to sequence 626 to 743bp long fragments of the COI mitochondrial gene (Supplementary material, Fig. 1). This resulted in a 267bp overlapping region with the COI/II fragments in Degnan et al. 2004. COI fragments were initially denatured with a Bio-Rad C1000 Touch™ Thermal Cycler (Bio-Rad, Hercules, CA) at 94°C for 2 min., then 35 cycles (94°C denaturation for 1 min, 45°C annealing for 1 min, 72°C extension for 2 min), then a final 72°C extension for 4 min. before going to a holding temperature of 4°C. 16S rDNA was amplified with Bloch16S-462F and Bloch16S-1299R primers (Degnan et al. 2004, Ramalho 2013, Wernegreen et al. 2009), which produced fragments from 763 to 824bp in length. 16S rDNA samples were denatured on the Bio-Rad C1000 Touch™ at 94°C for 2 min., then 30 cycles (95°C denaturation for 20 sec, 60°C annealing for 50 sec, 72°C extension for 90 sec), then a final 72°C extension for 5 min. before going to a holding temperature of 4°C.

Table 1: Camponotini collection localities and data, organized by subgenus

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>CUCIC Database #</th>
<th>Collection Location</th>
<th>Latitude/Longitude</th>
<th>Accession #</th>
<th>Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>subgenus Hypocamponotus</td>
<td>Camponotus australis</td>
<td>CUCIC00007640</td>
<td>Portal, AZ, USA</td>
<td>—</td>
<td>—</td>
<td>Depauw et al. 2004</td>
</tr>
<tr>
<td>subgenus Hypocamponotus</td>
<td>Camponotus maura</td>
<td>CUCIC00007641</td>
<td>Sim Valley, FL, USA</td>
<td>26°29′43″ N 80°12′44″ W</td>
<td>SY0427</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Hypocamponotus</td>
<td>Camponotus maura</td>
<td>CUCIC00007642</td>
<td>Davis, CA, USA</td>
<td>36°43′06″ N 114°40′45″ W</td>
<td>SY0413</td>
<td>Steven Wang</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus anticaeus</td>
<td>CUCIC00007643</td>
<td>Cypres, TX, USA</td>
<td>29°59′50″ N 95°37′11″ W</td>
<td>SY0412</td>
<td>Steven Wang</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus anticaeus</td>
<td>CUCIC00007644</td>
<td>Davis, CA, USA</td>
<td>36°41′47″ N 114°45′57″ W</td>
<td>SY0419</td>
<td>Steven Wang</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus anticaeus</td>
<td>CUCIC00007645</td>
<td>Portal, AZ, USA</td>
<td>—</td>
<td>—</td>
<td>Depauw et al. 2004</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus anticaeus</td>
<td>CUCIC00007646</td>
<td>Morenci, AZ, USA</td>
<td>32°32′55″ N 109°56′46″ W</td>
<td>SY0424</td>
<td>Steven Wang</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus maura</td>
<td>CUCIC00007647</td>
<td>Camp Creek, AZ, USA</td>
<td>33°52′09″ N 111°43′32″ W</td>
<td>SY0418</td>
<td>Jake Nitta</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus maura</td>
<td>CUCIC00007648</td>
<td>Safford, AZ, USA</td>
<td>32°38′04″ N 107°47′34″ W</td>
<td>SY0421</td>
<td>Steven Wang</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus maura</td>
<td>CUCIC00007649</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0426</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Mysmesallator</td>
<td>Camponotus maura</td>
<td>CUCIC00007650</td>
<td>Armony City, TX, USA</td>
<td>26°20′37″ N 97°25′14″ W</td>
<td>SY0419</td>
<td>Steven Wang</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007651</td>
<td>Gainesville, FL, USA</td>
<td>—</td>
<td>—</td>
<td>Depauw et al. 2004</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007652</td>
<td>Gainesville, FL, USA</td>
<td>—</td>
<td>—</td>
<td>Depauw et al. 2004</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007653</td>
<td>Gainesville, FL, USA</td>
<td>—</td>
<td>—</td>
<td>Depauw et al. 2004</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007654, CUCIC00007655</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007656</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007657</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007658</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007659</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007660</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007661</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
<tr>
<td>subgenus Tynesia</td>
<td>Camponotus floridanus</td>
<td>CUCIC00007662</td>
<td>Sewall's Point, FL, USA</td>
<td>27°12′25″ N 80°12′12″ W</td>
<td>SY0417</td>
<td>Cole lkebowski</td>
</tr>
</tbody>
</table>
H₂O, and 150µL GelRed. Each agarose well received 3.0µL PCR product and 3.0µL loading dye mix. Electrophoreses were run in 1x TBE for 40 minutes at 80V and 200mA. An AMRESCO N550-300UL 100bp DNA ladder (VWR Chemicals, LLC, Solon, OH) was prepared alongside each gel to check approximate fragment lengths.

PCR products then underwent DNA purification through the ExoSAP-IT™ Protocol. 1.5µL ExoSAP was added per reaction and hydrolysis cleaning was performed in a Bio-Rad C1000 Touch™ Thermal Cycler at 35°C for 15 minutes, and then 80°C for 15 minutes.

DNA samples were then quantified through a Qubit 4 Fluorometer. 16S rDNA fragment yield was measured against BR STD1 and BR STD2 standards from Invitrogen (Thermo Fisher Scientific, Eugene, OR), and COI fragment yield was measured against HS STD1 and HS STD2 standards from Invitrogen.

DNA Sequencing
A BigDye DNA sequencing reaction was performed on the cleaned PCR products for each forward and reverse primer individually, totaling four separate primer batches of LCO-1490, HCO-2198, Bloch16S-462F, and Bloch16S-1299R. Each vial received 0.3µL Big Dye, 2.0µL 5x Buffer, 0.5µL 10 mM respective primer, 5.2µL pure H₂O, and 2.0µL cleaned PCR DNA. Sequencing reactions were performed in a Bio-Rad C1000 Touch™ Thermal Cycler, at 96°C for 1 minute, 25 cycles (96°C for 10 sec, 50°C for 5 sec, 60°C for 4 min). DNA samples were then submitted to the Genomics Facility at the Cornell Institute of Biotechnology for Ready-to-Load Sanger sequencing.

DNA Analysis
Forward and reverse sequences were assembled in Geneious (Kearse et al. 2012). The COI sequences after aligning and trimming were 267bp in length, the 16S rDNA sequences were 749bp in length. These were then aligned with MUSCLE 3.8.425 (Edgar 2004) with 8 maximum iterations. Alignments were visually checked in Mesquite 3.61 (Maddison & Maddison 2021), and extra spaces at each end were trimmed off. The fully aligned sequences were then run through a RAxML Maximum Likelihood analysis (Stamatakis 2014) as well as a MrBayes Bayesian analysis (Huelsenbeck & Ronquist 2001, Ronquist & Huelsenbeck 2003) on the CIPRES Portal (Miller et al. 2010). jModeltest 2.1.10 suggested TP3uf+I+G for COI and TVM+I+G for 16S rDNA. Since RAxML and MrBayes do not have these models implemented, the GTR+I+G model was used for among-site rate variation instead as an approximate equivalent. For Bayesian analysis, the number of substitution types was set at 6, using a 4X4 substitution model. Markov chain Monte Carlo (MCMC) was run for 10,000,000 generations in MrBayes, sampling every 1000 generations and discarding the first 25% as burn-in.

Co-diversification analysis was tested in Jane 4 (Conow et al. 2010) with the completed RAxML trees. For the genetic algorithm parameters, 100 generations with a population size of 1,000 were run in solve mode on the 39 host + 39 parasite tips for a total of 78 tips. In stats mode, 50 generations on a population size of 100 were run to generate a p-value distribution with the data, including original problem instances, with a sample size of 50, and random tip mapping. Two COI sequences from Ca. decipiens and Co. impressa failed to generate contigs, so they and their bacterial symbionts were excluded from the co-speciation analysis.

Results
The Sanger sequence contigs generated 626 to 743bp reads for Camponotus COI and 763 to 824bp reads for Blochmannia 16S rDNA. The total sequences represent 39 host species/endosymbiont associations total distributed across two host genera. Twenty novel COI and 16S rDNA associations were sequenced. All 8 Camponotus subgenera present in the continental USA are represented, including 4 species of Colobopsis (Table 1, Fig. 1). There were 22 total sequences for Blochmannia
16S rDNA, but 2 corresponding host COI contigs failed to align, so those 2 Blochmannia 16S rDNA were excluded from further analysis.

Outgroup Selection

Colobopsis was recovered to be sister to all Camponotini in Ward et al. 2016. Werner et al. 2009 found that Blochmannia obliqua is also the earliest diverging lineage on their analysis across Camponotini, so the phylogenies were rooted on the node between Camponotus and Colobopsis to keep monophyly in both genera, with Co. obliqua and B. obliqua as sister to other USA Colobopsis and USA Colobopsis symbiont Blochmannia respectively. This is supported by B. obliqua being measured as the earliest diverging Blochmannia lineage in a previous Camponotini dataset (Williams & Wernegreen 2015).

Phylogenetic Modelling

In the Blochmannia 16S rDNA, the nucleotide frequencies were calculated with RAxML to be A: 0.283335, C: 0.196855, G: 0.290438, T: 0.229371. In the Camponotini COI mitochondrial DNA, the nucleotide frequencies were calculated to be A: 0.281277, C: 0.239281, G: 0.093596, T: 0.385846.

The reconstructed Bayesian and maximum likelihood trees are shown (Supplementary material, Fig 2), recovered with the GTR+I+G (INVGAMMA) model for sequence evolution (Tavaré 1986). The maximum likelihood trees were chosen for subsequent co-diversification analysis because they had no polytomies. Some of these generated trees have low support or polytomies on some nodes, which is likely due to the limitations of 16S rDNA of being a conserved gene (Poretsky et al. 2014) and may not show strong phylogenetic signal in some cases. Additionally, the limitations of the COI mitochondrial gene for phylogenetic signals must be recognized, including its ability to reach saturation quickly due to A+T richness (Morlais & Severson 2002). The incompleteness of the overlapping 267bp section of the COI mitochondrial gene sequenced also reduces available phylogenetic signal in the data.

Co-diversification Analysis

The Jane 4 (Conow et al. 2010) analysis of co-diversification found a significant p-value distribution from the original cost. Out of 69,064 solutions found, the most common isomorph which consisted of 61.6% of the total was chosen. Confidence values are shown on the nodes (Fig. 2). In statistics mode the original randomized cost was 37. With a sample size of 50, the observed cost had a median of 67 with a standard deviation of 2.18. The p-value cost histogram shows that the original randomized cost of no co-divergence does not overlap with the observed cost, which means that the p-value is significant and indicates possible congruence and co-diversification.

Discussion

The goal of this study was to test for co-diversification between US Camponotini and their Blochmannia endosymbionts, expanding on previous data. The purpose of this study is to generate new host and endosymbiont sequence data for USA Camponotini-Blochmannia relationships and use the larger dataset to test if co-diversification (Deyrup et al. 2004) is still supported. This study generated 20 new Camponotini COI sequences and 22 new Blochmannia 16S rDNA sequences.

Most of the divergences that Jane 4 shows may result from the analysis picking up minor differences in the topologies of species divergences within a clade, since the Blochmannia does not tend to move out of an immediate clade. However, there is one such case where the Blochmannia not only jumps out of a clade but between subgenera. It was found that Blochmannia novogranadensis jumped between two unrelated subgenera, from Myrmentoma to Myrmaphaenus. Both the ML topology and the Bayesian bootstrap values showed high confidence in B. novogranadensis 16S rDNA within a group of Myrmentoma, in a clade with B. snellingi, B. essigi, and B. cuauhtemoc. In contrast, the COI mitochondrial sequences place Ca. novogranadensis outside of any Myrmentoma species. Ca. novogranadensis is introduced to Florida (Deyrup & Belmont 2013, Wetterer 2019)
Fig. 1: Host genus and subgenus (in parenthesis) groupings mapped onto maximum likelihood cladograms of COI mitochondrial Camponotini and 16S rDNA *Blochmannia* trees. Calculated percent probabilities shown on nodes. Colors indicate subgenus groupings.
and lives arboreally, potentially in close contact with native *Myrmentoma* species. It is possible *Ca. novogranadensis* may have picked up this strain of *Blochmannia* from shared arboreal habitat, but more data is needed to conclude how and when this strain could have been horizontally transmitted.

Coverage of subgenera is increased in this study (Fig. 1), and this data supports many previous taxonomic groupings, like the *Ca. (Tanaemyrmex) festinatus* complex (Snelling 2006), the close relationship of *Ca. atriceps* and *Ca. floridanus* in the subgenus *Myrmothrix*, and the genus *Colobopsis*. It continues to give evidence that some broad subgeneric categories are inaccurate when grouping species of *Camponotus* by molecular phylogenetic relationships. The subgenera *Camponotus*, *Myrmentoma*, and *Tanaemyrmex* were recovered as polyphyletic, and *Ca. ulcerosus* could prove to be closely related to *Ca. mina* and not a true *Hypercolobopsis*. Like previous studies (Degnan et al. 2004), *Ca. schaefferi* arises from a group of *Myrmentoma* instead of
from the nominate *Camponotus* subgenus, but in this study *Ca. texanus* comes sister to *Ca. schaefferi*, something hypothesized from COI mitochondrial data and morphology (Gadau et al. 1999, Mackay 2019). The recovered trees do not support *Camponotus laevigatus* (=past *quercicola*) as it is in the same clade as *Ca. texanus* and *schaefferi* (Gadau et al. 1999). In this study, *Ca. laevigatus* mitochondrial COI and its 16S rDNA *Blochmannia* symbiont were recovered within or close to a group of temperate nominate *Camponotus*, and never in a monophyletic clade with *Ca. texanus* and *schaefferi*.

Similar to previous studies on only *Camponotus* (Degnan et al. 2004), we have found evidence of co-diversification between *Camponotus/Colobopsis* and *Blochmannia*, which also used a GTR+I+G model for among-site rate variation and an ML phylogenetic tree. The co-diversification found in this study indicates a lack of horizontal gene transfer in *Blochmannia* (Degnan et al. 2004), like genome stability in the related bacterial endosymbionts *Buchnera* and *Wigglesworthia* (Akman et al. 2002 Funk et al. 2000, Tamas et al. 2002, Wernegreen & Moran 2001). Jane 4 cophylogeny analysis shows that *Blochmannia* have high fidelity of vertical transmission within a species of Camponotini and are tightly bound to their host species, but may be able to horizontally transmit, as observed for the first time in this study.

Acknowledgements

Thanks to Corrie Moreau for funding this project and guidance, and for Manu Ramalho’s comments, intensive teaching of lab techniques, and help during analysis for this project. Thanks to the Moreau Lab undergraduate members Corey Reese and Jenna Webb, who helped me in the molecular lab and during data analysis. Thanks to my collaborators Aaron Stoll, Cole Icenhower, Jake Nitta, Jonathan Ross, and Tyler Boehmer, who collected and submitted numerous Camponotini specimens for sequencing. Thanks to Alex Wild at Brackenridge Field Laboratory for providing the Camponotus texanus specimen, Rob Plowes for allowing me to collect on the BFL campus, as well as Joe MacGown for letting me collect on his property in Mississippi.

References

Supplementary Figures

COI/II	C1-J-1754Fb	CCACGTAAAATAATATAAGATTTTGAC
	C2-N-3661Rb	CCACAAATTTCTGAACATTGACCA
	C1F356F	GGATCAGGAACAGGTGAAC
	LCO1490	GGTCACAAATATCATAAGATATTGG
	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA

16S rDNA Bloch16S_462F AAACCCTGATGCAGCTATACCCGTGTGTG
 Bloch16S-1299R CCATTGTAGCAGTTTGTAGGCCCTACTCA

Supplementary Fig. 1: Primer Sequences
Supplementary Fig. 2: Bayesian analysis (top) and maximum likelihood (bottom) endosymbiont 16S rDNA and host COI consensus trees, with genetic distances to scale and calculated percent probabilities.