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1. Introduction
To the north of Ithaca, Cayuga Lake stands as a land-
mark of the state and contributes to the mild local cli-
mate and supreme natural beauty. However, in recent 
years, an invasive plant species, Hydrilla verticillate, 
has been identified to pose significant threats to the 
local ecology of Cayuga Lake. Hydrilla is an aggressive 
submersed perennial plant. As an invasive species, it 
out-competes native plants and creates a monoculture 
that disrupts the balance of the local ecosystem. Hy-
drilla’s potato-like “tubers” that grow in the bed of the 
lake make herbicides largely ineffective in the long term 
(New York Invasive Species Information, 2019). Despite 
various efforts to eradicate the species, new locations 
of Hydrilla have been continuously spotted, and early 
detection of these new locations remains at present the 
optimal way to control their spread. Given limited time 
and human resources, there is thus an urgent need of a 
scientific evaluation system that monitors new Hydril-
la spots in real-time and predicts their future develop-
ments.

We come to our evaluation system by essentially an-
swering the following questions:
•	 What factors contribute to the growth and 

spread of the plant?
•	 What would the natural spread pattern of the 
plant be like?
•	 How can we accurately and timely monitor the 
current distribution of the plant?
•	 How do human activities, such as boating and 
chemical treatment, influence the plant?

2. Assumptions and 
Justifications
To answer the first question from above, we need a clos-
er examination of the habits of Hydrilla. This will also 
lead to some important assumptions and simplifications 
of our model used to predict the future developments of 
the plant. Hydrilla is a perennial species with a normal 
life span of 7 to 12 years. Considering that the Cayuga 
Lake Hydrilla Management Plan is made for a 5-year 
interval (Cayuga Lake Hydrilla Task Force, 2021), we 
set our model’s simulation time length to 5 years and 
assume that all Hydrilla will not die within this time pe-
riod. Hydrilla propagates primarily by stem fragments, 
although turions and subterranean tubers also play an 
important role. The main means of the introduction of 
Hydrilla is as castaway fragments on recreational boats 
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and trailers and in their live wells. Once the stem pieces 
get carried away to a new place, they grew to root their 
tubers in the substrate to establish new colonies. It is 
thus reasonable to use the number of tubers to repre-
sent the overall density of Hydrilla. As Hydrilla grows 
rapidly and caps at 6000 tubers per square meters (Mis-
souli Stream Team, 2020), we further simplify our cal-
culation by substituting the conventional logistic pop-
ulation growth model with exponential growth model 
that caps at 6000 tubers per square meter. This also co-
incides well with Audl’s observation that invasive plant 
species have an exponential growth rate for a relatively 
long period (see Section 3). Figure 1 shows that when 
the growth rate is high, exponential growth with cap is 
a good approximation of the logistic growth. 

We also assume that the probability of spread fluctuates 
around a constant. That is, the probability of 35 spread 
at a certain area is independent of the population densi-
ty at or around that area (Blackburn and Tueller, 1970). 
Finally, empirical evidence suggests that Hydrilla can-
not grow in water regions deeper than 25 feet (7.62 me-
ters) (New York Invasive Species Information, 2019), so 
we limit our consideration to water regions of 0-25 feet 
deep. 

3. Simulation
In this section, we build a stochastic simulation mod-
el to predict the future spread of Hydrilla. We start by 
considering the simple setup where no human activity 
is present and identify plant growth and spread as two 

main factors of our simulation model. Modifying his-
torical models, we propose our Invasive Plant Popula-
tion Dynamics (IPPD) model as a better fit for Hydrilla 
simulation. Geographical information and human ac-
tivity are then supplemented to finish the simulation. 

3.1 Auld’s Model
In 1980, Auld and Coote proposed the following classic 
model on invasive plant growth and spread in the natu-
ral environment (Auld & Coote, 1980).

Here Pn denotes the density of Hydrilla at time n. r is the 
population growth rate and s is the spread rate. Accord-
ing to Boughey in 1973, rather than the commonly used 
logistic function for population growth, empirical evi-
dence suggests that invading plant species have a con-
stant exponential increase rate for a relatively long pe-
riod. Hence here (1 + r) indicates exponential growth. 
Auld further assumes that the fraction of spread s is a 
constant, given that the dispersing fraction from a lo-
cation is relatively small in relation to the annual in-
crement of the population. Thus (1 − s) denotes the 
remaining population that does not spread. As stated 
in Section 2, we will keep these two important assump-
tions in the following modeling.

3.2 The IPPD Model
One major problem with Audl’s model is that the al-
ready established plant and the newborn have the same 
probability of dispersing. Since Hydrilla has the distinc-
tive feature that its tuber roots in the lake’s bed, which 
makes it relatively immobile, not all population can 
spread. Instead, only the newly grown Hydrilla, whose 
root yet shallow and tuber not matured, should be able 
to spread. This leads us to revise the time-step equation 
as

Here Pn(i, j) denotes the Hydrilla population (number 
of tubers) at position (i, j) at time n. In(i, j) is the spread 
increment at location (i, j) at time n, calculated by the 
increase in tubers via dispersing from other locations. 
Expected values are used to reflect the stochastic nature 
of our model.

Figure 1: Comparison Between Two Population Growth 
Models

(1)

(2)
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Considering the rather mediocre mobility of Hydrilla, 
we adhere to Audl’s model to set s = 0.05 and the range 
of spread to be 3 units within the current location. Al-
though such a s might seem arbitrary, later in sensitiv-
ity analysis we will show that the value of s would not 
effect the qualitative result of the simulation. The range 
of spread comes as a result of our choice of the bivariate 
normal distribution (see Section 3.2 for more detail). 
Since Hydrilla commonly grow to length over 9 meters 
and grow as fast as 0.3 meters a day (Schuyler Coun-
ty Soil and Water Conservation District), we make the 
assumption that every time a Hydrilla grows another 9 
meters in length, it roots a new tuber in the lake’s bed. 
In other words, a new Hydrilla is grown. Moreover, our 
time unit is set to a month and 0.3m/day × 30day/month 
= 9m/month, so the number of Hydrilla doubles in a 
month. Thus we have the formula for the growth rate:

Another flaw of Audl’s model is that for simplicity rea-
sons, Audl assumes equal possibility to spread from a 
certain location to any place nearby within a certain 
range. This contradicts the simple intuition that more 
75 population should disperse to locations closer to 
the source point. Hence, we keep the spread radius the 
same as 3 units nearby but change the probability dis-
tribution of the dispersal from a uniform distribution to 
a bivariate normal distribution. According to our setup, 
any place further than 3 units, by calculating the double 
integral of the normal distribution over the region, has 
probability near zero and can be omitted. The spread 
increment I(i, j) can be now calculated by the double 
integral of the population density times 80 the proba-
bility following normal distribution N (0, I). Here f(x, y) 
denotes the probability density function of the normal 
distribution, which reflects the probability that Hydrilla 
spread from location (i+x, j+y) to (i, j)

Whether a newborn Hydrilla spread or not can be seen 
as a Bernoulli trial with probability s of success, so the 
total number of spread Pn-1rs follows a binomial distri-
bution. As the number of tubers grows rapidly to a rela-
tively large number, and according to the Central Limit 
Theorem, we can use normal distribution 
N (Pn-1(i, j)rs, Pn-1(i, j)rs(1 − s)) to approximate the ex-

periment result. In actual coding we introduce an in-
termediate variable En(i, j) as the Hydrilla population 
dispersing away from (i, j) at time n, generated by a 
random variable following the normal distribution. At 
program run time, we iterate all valid (i, j) in the map 
and calculate E(i, j) following the Bernoulli process. We 
then divide the dispersal by the bivariate 90 normal dis-
tribution and increment nearby units by the according 
amount. In other words, I(i, j) is not directly calculated 
during the simulation but comes as a sum of separate 
increments from nearby units. Theoretically we should 
obtain the same simulation result. To focus more on the 
change of a single unit within each iteration of time, we 
can express Pn(i, j) as 

We verify this approach by trying on a simple 200 × 200 
map, with the initial Hydrilla at the center 95 (100,100). 
The side length of a single unit is set as 44m in accor-
dance to later simulations. After simulation of five years, 
the density of Hydrilla can be shown in the figure below:

The darkest green signifies a density at 6000 tubers per 
square meters (the maximum density), while the light-
est green represents a density of 0-42, as 42 is com-
monly used as a benchmark for high Hydrilla density 
(CMCM, 2021). In other words, a light green grid in-
dicates that Hydrilla is at present in that grid, but only 
in a low density. After the region is left untreated for 
five years, Hydrilla has already spread across the entire 
region, and a large region around the center has a high 
level of density. Another interesting result is that instead 

(3)

(4)

(5)

Figure 2: Single Source Spread Simulation
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of a graduate change of color across the darkest-lightest 
boundary (we have in fact 10 different shades of greens 
in our program!), there is a clear, dramatic distinction 
between the dark green and the light green. That said, 
even though Hydrilla quickly spreads to cover the en-
tire region, the area with high concentration grows at a 
slower rate. But once Hydrilla establishes itself at a new 
location, the area quickly grows into high concentra-
tion, which is explainable by the exponential setup of 
the model.

3.3 Running the IPPD Model over Cayuga Lake
The map of Cayuga Lake we use captures a region of 
51.04km×20.77km and is represented as a 1160×472 
matrix during coding. Each matrix unit thus represents 
a square with side length

Image processing technique based on OpenCV is em-
ployed to produce the gray-scale map that facilitates 
model coding. Canny edge detection algorithm is ex-
ecuted to produce the shoreline and the 25 feet water 
depth contour line. Since Hydrilla roots at most 25 feet 
deep water, we limit our consideration to the white 
region as seen in the following figures. According to 
the latest obtainable data from October 2020 (Hydril-
la Community Conference, 2020), 36 spots of Hydrilla 
were found at the southern end of the lake and 3 spots 
found close to the town of Aurora. We set this as our 
model’s initial state and obtain Figure 3 (see Appendix 
for high resolution Figure 3.3).

As can be seen in Figure 3, within one year of time dark 
green that signifies high concentrations of Hydrilla ap-
pears near initial spots. The initial small populations 
of Hydrilla start to establish themselves. Further away, 
more areas of light green cover nearby regions. This 
means that Hydrilla is at present at these places but has 
not established itself yet. By the end of the second year 
(Figure 3.2), the original light green areas have partial-
ly turned into dark green. A much larger area is now 
susceptible to high concentrations of Hydrilla. After 
five year’s simulation, the Hydrilla continues to invade 
the rest of the east and south coasts. While the estab-
lished areas turn darker in green, the spread speed of 
Hydrilla, to our surprise, dramatically slows down. In 
other words, the areas susceptible of high concentra-

tions of Hydrilla after five years differs little from the ar-
eas susceptible of high concentrations of Hydrilla after 
two years. Such results also attest the advantage of our 
model over Audl’s model. By introducing geographical 
information into our IPPD model, we are able to not 
only predict the global developments, but also make lo-
cal analysis of Hydrilla that are more sensitive to nearby 
geography, such as coasts and water depth. This is best 
seen in our analysis of how the west coast would be free 
of invasion. Tracking only the total number of Hydrilla, 
on the other hand, would lose all this information. As 
we will seen by the end of this section, this might also 
led to inaccurate results.

In comparison with the spread simulation in the plane 
(Figure 2), where the Hydrilla quickly spreads all over 
the map and continue to enlarge established areas, there 
seems to be an upper bound of the area that Hydrilla 
could spread. This gives the conclusion that certain geo-
graphical features of Cayuga Lake limits the spread of 
Hydrilla. One possible explanation is that the vast area 
with water depth more than 25 feet makes the growable 
region in long narrow strap shape, which in turn ham-
pers the spread of the Hydrilla. Still, this is an unaccept-
ably large area and certain actions need to be taken.

Next, we add boating to our model and verify it as a ma-
jor contribution to the spread of Hydrilla. The magenta 
asterisks in the figures represent the marina locations 
(Tompkins County Planning and Sustainability Depart-
ment, 2020). For simplicity reasons, we combine near-
by marinas as one and give different weights to them 
according to their combined size (number of marinas, 
number of boats, etc.). This results in five locations to 
be considered: Beacon Bay (Cayuga), Frontenac Harbor 
(Union Springs), Don’s (Genoa), Finger Lake Marine 
Svcs (Lansing), and City Harbor (Ithaca), with weight 
3, 2, 1, 1, 3 at each location. We also make the assump-
tion that there is one trip on the Cayuga Lake every day, 
whose departure and arrival location are randomly cho-
sen from the marinas. In the real world, there are obvi-
ously much more boat trips, but for the purpose of this 
paper this simplification is sufficient to show how boat-
ing facilitates Hydrilla spread. Let mi denote the weight 
of marina i, then the probability that on a given day, the 
trip is from marina a to marina b is:

(6)

(7)
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Figure 3.1: After 1 Year. Figure 3.2: After 2 Years.                 Figure 3.3: After 5 Years 
(No Boats). 

Figure 4.1: After 1 Years. Figure 4.2: After 2 Years. Figure 4.3: After 5 
   Years (with Boats).
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Therefore, we have the following matrix that represents 
each pab probability:

With the boating activity added to our model, we ob-
tain our simulation results in Figure 4 (see Appendix 
for high resolution figure). Clearly a much larger area 
now has high concentrations of Hydrilla, including the 
entire north, east, and south part of the lake. The only 
part free of Hydrilla is the west coast of the lake. This 
makes sense as there is no marina on the west. In reality, 
however, boats might pass or temporarily stop along the 
west coast, which could lead to Hydrilla spread there. 
Figure 4.1 and Figure 4.2 help us to see how boating 
facilitate the spread of Hydrilla. Figure 4.1 shows that 
after one year of time new spots of Hydrilla showcase 
in all marinas, although in a small amount. This is no 
longer the case by the end of the second year. The area 
with presence of Hydrilla has significantly grown larger 
and they have established themselves around the mari-
nas. From there Hydrilla continues to spread across and 
essentially covers the entire north of Cayuga lake. We 
conclude that boating significantly conduces Hydrilla 
spread by introducing the plant to new locations where 
it could not reach in natural settings. 

Apart from the direct results from the figures, a quanti-
tative analysis of the simulation also help us better sup-
port our conclusions. We keep track of the number of 
units that reach the maximum density of 6000 tubers 
per square meters, which reflects the total area that has 
the highest density. This combines the growth rate of 
Hydrilla with the global spread speed and serve as a 
good indicator of the overall situation. As can be seen 
in Figure 5, with boating added to our model, the Hy-
drilla continuously grow and spread at an exponential 
speed. In comparison, the Hydrilla reach the maximum 

capacity much slower when the boat is not present. An 
initial thought would be that the total number of Hy-
drilla should grow at an exponential speed regardless 
of the spread, but in reality Hydrilla would grow to 
the maximum local capacity and thus slow down the 
growth rate of the total population. Another interesting 
observation is that around 27 months of simulation, we 
see a stark decrease in the increase rate of the maximum 
density area in the case without boat. This well supports 
our conclusion that “the areas susceptible of high con-
centrations of Hydrilla after five years differs little from 
the areas susceptible of high concentrations of Hydrilla 
after two years.” From another point of view, we verify 
the existence of an upper limit of Hydrilla spread in the 
natural setting.

4. Sampling

We have obtained the simulation model that predicts 
the future development of the plant. The question now 
is how do we determine the initial state of our mod-
el? The above simulations use available data in 2020, 
and clearly, the accuracy of such initial states would be 
crucial to good simulations. Quantitative survey pro-
vides a means to obtain accurate data for this purpose 
(Madsen, 1993). The current survey method at Cayuga 
Lake monitors previously treated sites by taking small 
samples of the sediment, called cores, and counting the 
number of tubers found in each core (CMCM 2021). 
The sampling design of the survey, such as the number 
of tubers to take, and the subsequent statistical inference 
of the survey results would then help generalize from 
local information of the samples to the overall situation 

Figure 6: Area of Maximum Density.

Figure 5: Probablity Matrix.
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of Cayuga Lake (Madsen, 1993).

4.1 Spencer’s Logistic Regression
In 1994, Spencer D.F. published an important paper on 
subterranean propagules of submersed aquatic plants, 
including our most concerned Hydrilla verticillata. 
Spencer collected empirical data at Belle Haven Marina 
and environs, Potomac River, and Virginia, as well as 
historical records from Sutton and Portier (1985), An-
derson and Dechoretz (1982), and Harlan, Davis, and 
Pesacreta (1985). The data summed up to 379 sample 
means and associated standard error from a total of 
4942 cores (i.e. sample units). Using PROC REG in SAS 
(SAS Institute, 1988), Spencer claimed that the frequen-
cy distribution of Hydrilla follows not a normal distri-
bution but a log normal distribution. Take log(s2) and 
log(¯x) (all logs are in base 10) there exhibits a clear lin-
ear relationship between the two

Here ¯x is the average number of tubers per square me-
ters of the samples and s is the sample standard devia-
tion.

4.2 The Baseline Approach
The current sampling design at Cayuga Lake consists 
of taking 30 cores at each site, with each core in about 
0.0187 square meters (CMCM, 2021). Suppose each 
core contains xi (1 ≤ i ≤ 30) tubers, then the 200 sample 
mean per square meters would be

The standard deviation would thus be

Note that the frequency distribution of Hydrilla follows 
not a normal distribution, thus we cannot simply add or 
subtract multiples of standard deviations over the sam-
ple mean to get a confident range of the actual number 
of tubers. Then question naturally arises as to how con-
fident we are in using our sample mean to reflect the 
real situation? A simple and intuitive validation is to see 
whether our sample mean fits the logistic regression. If 
the standard deviation calculated by the samples differs 
only a little from the standard deviation calculated by 

the logistic regression, we are confident in our sam-
ple mean. Otherwise, we need to increase the sample 
number until the standard deviations match. In prac-
tice, however, it is often too troublesome to calculate 
the standard deviation from samples, especially when 
it is constantly changing. An alternative approach often 
used in the industry (Madsen, 1993; Spencer, 1994) as-
sumes a fixed linear relationship between the standard 
error and the sample mean. Often, it is assumed that SE 
= 0.2¯x. Plug in SE = s/√N, where N is number of sam-
ples (cores), and we have

Rewrite the logistic regression we have

Starting with N = 30, equation (11) becomes s = 1.095¯x 
and monotonically increases as N increases. Meanwhile 
¯x would stabilize around a constant according to the 
Law of Large Numbers. Thus s1 and s2 will eventually 
meet and the sampling process would terminate.

Finally, there is one last adjustment in the current ap-
proach. Given the sensitive nature of the issue, we want 
to be more conservative in our conclusion. Hence, when 
the sample data does not fit in the logistic regression, if 
¯x is above the curve (given same s has higher ¯x), we 
are more prone to believe this outlier actual exists and 
we should take immediate action to control the high 
concentration of Hydrilla. On the other hand, if ¯x is 
below the curve, we are more suspicious of our sample 
results and should take more samples to fit the curve. In 
practice, 42 tubers per square meter is often considered 
the benchmark for high concentration of Hydrilla. Thus 
during our sampling process, if ¯x ≥ 42 at any time, we 
cease the sampling and believe immediate action should 
be taken.

4.3 An Adaptive Approach
To be even more efficient, we can calculate the mini-
mum sample size N instead of the standard deviation. 
The idea is to assume that the theoretical standard devi-
ation equals the sample standard deviation to get a for-
mula of N. Combining equation (11)(12) we have

(8)

(10)

(9)

(12)

(11)

(13)
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If the calculated sample number is greater than the 
actual sample number, by some simple mathematics 
we know this implies that s1 < s2, and we need more 
samples to fit the curve. Instead of comparing standard 
deviation, we can now directly calculate the minimum 
sample size. Note that as ¯x changes as more samples 
are collected, according to equation (13), the minimum 
number of samples N also changes. Thus we come up 
with the following adaptive algorithm—

Here xi denotes the average number of tubers of all 
samples at iteration i, Ni denotes the performed total 
number of sampling at iteration i, and N(xi) denotes 
the minimum number of sampling to be confident of xi. 
0.79 is calculated from 0.0187 * 42, following the same 
procedures at the beginning of section 5.1. If the sam-
ple average is greater or equal to the high concentra-
tion thresh hold, we exit the program and claim the area 
has a high concentration of Hydrilla. If the total sample 
number is greater or equal to the minimum sample size, 
we also exit the program and claim that there expect to 
be xi tubers per square meter. If neither of these condi-
tions is satisfied, however, we take another 5 samples 
and recalculate the sample mean and minimum sample 
size. Notice however that as the sample average goes to 
0, the minimum sample size will go up to infinity. Thus 
in practice it is recommended to set also a upper bound 
of the sample size as 100.

5. Sensitivity Test
5.1 Simulation
In our current model we set s = 0.05 based on the fact 
that Hydrilla’s tubers are relatively immobile and in 
Auld’s model the spread rate is set to 0.05 for medio-
cre mobility plants. A more direct statistics of Hydrilla 
spread would be much better but is hard to obtain. This 
leads us to double check the spread rate. Figure 7: An Adaptive Algorithm for Sampling

Figure 8: s = 0.01 Figure 9: s = 0.05 Figure 10: s = 0.1
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We test our model with different spread rate: s = 0.1, s = 
0.05 and s = 0.01 while keeping other parameters fixed. 
A closer look reveals that the dark green regions become 
sparse as s decreases, which means that less areas have a 
high density of Hydrilla and more areas have zero den-
sity with a lower spread rate. As spread rate increases, 
Hydrilla has a higher probability to spread from one 
area to others, and more areas would be affected. On 
the other hand, all of these three spread rates display the 
similar distribution pattern of the plant and only differs 
in the subtle density of the dark green. Thus choosing 
0.05 as a middle ground value would not lead to severe 
inaccuracy in terms of the qualitative simulation result.

5.2 Sampling
Another important parameter that we need to test is 
the standard error of the sample mean. In either the 
baseline approach, the adaptive algorithm, or historical 
works, the standard error is set to be an arbitrary value 
of 0.2. Here we test how sensitive the minimum sam-
ple size is in our adaptive algorithm. We vary the stan-
dard error from 5% to 50% of ¯x and plot the number 
of samples needed versus this proportion in Figure 10. 
The conclusion from the figure is that if we are willing 
to tolerate higher variability in our samples, we can pull 
fewer cores to infer the overall picture.

Often time in practice we want a rough estimate of the 
minimum sample size in terms of the current sample 
mean, and we want our rough estimate to not fluctu-
ate too much so that the adaptive algorithm terminates 
faster. This leads us to vary the sample mean and see 
how the minimum sample size changes (Figure 11).

From Figure 11, the required number of samples de-
creases while the sample mean increases. Note that the 
minimum sample size varies greatly when the sample 
mean is how, which justifies why we should be more 
conservative of our conclusion when the sample mean 
is low.

6. Discussions

Due to the distinctive nature of simulation of sampling, 
the simulation results and analysis and the reasoning 
of the statistical inference are discussed in detail sepa-
rately in Section 3, 4. This section mainly elaborates on 
some of the possible future works after our study.

Refine Model So far, our model incorporates the natu-
ral growth of the plant, the dispersal of the plant, and 
boating as the main factor of the human spread of the 
species. One potential future work is to extend the cur-
rent model to incorporate more human activities, such 
as cleaning the plant using fluridone. Environmental 
factors such as temperature, sunlight, wind, water lev-
el, etc., might also significantly influence the growth 
and spread of the plant. Also, in this paper, only the ten 
marinas alongside the Cayuga Lake are considered for 
boat activities for simplicity. One can include more de-
tails for boating activities by also considering boat ramp 
launch site and paddlecraft launch site.

Other Species Another direction is to modify the pa-
rameters to model other plant species with similar be-
haviors. For the spread simulation only the growth rate 

Figure 11: Minimum Sample Size in terms of SE

Figure 12: Minimum Sample Size in terms of Sample Mean

52 | The Cornell Undergraduate Research Journal



r and spread rate s follow directly from the features of 
Hydrilla. While in the sampling assessment, one can 
run linear regression on different species to get different 
equations between σ and ¯x, and the assessment meth-
od as well as the adaptive algorithm should still work.

Update Data For the sampling assessment, this paper 
directly uses Spencer’s empirical results of Hydrilla in 
1994. More accurate and relevant data can be obtained 
from direct surveys and historical data for Cayuga Lake 
protection. One might also seek more up-to-date data 
and reproduce Spencer’s regression results.

Practical Concerns Our analysis mainly focuses on the 
quantitative and theoretical aspects of the simulation/
samples. In practice, other than how many samples to 
take, there is also the concern of how to take those sam-
ples. Should the sample points be selected at regular 
intervals or completely random? What utilities better 
collect the samples? Discussion on these practical ques-
tions also has theoretical importance. For example, the 
actual error rate of our sample mean might depend on 
the method of sampling as mentioned above.

7. Concluding Remarks

Overall, this paper aims to provide a practical, quantita-
tive, and real-time evaluation system that helps monitor 
and predict the population dynamics of the plant. The 
system includes two main parts: sampling and simu-
lation. In Section 3, we discuss in detail our stochastic 
Monte Carlo simulation based on the enhanced Inva-
sive Plant Population Dynamic (IPPD) model. Human 
activities, such as boating, are identified to greatly ac-
celerate the spread of Hydrilla. In Section 4, we employ 
statistical methods to promote confidence in the sample 
results, which in turn guarantees more accurate simula-
tion results. We provide an adaptive algorithm to calcu-
late the minimum sample size in real time. Altogether, 
the authors reach the following conclusions: (1) if left 
unattended, a small population of Hydrilla could quick-
ly establish itself and expand to nearby areas; (2) in 
natural settings Hydrilla could only cover limited areas 
of Cayuga Lake due to the geographical features of the 
lake; (3) boating significantly conduces Hydrilla spread 
by bringing Hydrilla to new locations that it could not 
reach in natural settings; (4) generally speaking, low 

sample mean indicates not low density of Hydrilla, but 
that more samples are needed.
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