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IntroductionIntroduction

With the recent successes of deep learning 
algorithms, it has become a topic of interest 
to see whether such algorithms (or variations 
of them) could potentially be the same as 
those used by biological systems. This has 
led to the question of biological plausibility, 
which measures the extent to which a learn-
ing algorithm could hypothetically be real-
ized in the brain’s hardware (Illing, 2019).

It is widely known that deep neural net-
works, consisting of layers of neurons and 
synaptic connections, are loosely based on 
the structure and function of the brain. Nev-
ertheless, backpropagation, the central algo-
rithm used to train deep neural networks, is 
considered by many to be incompatible with 
leading theories in neuroscience (Lillicrap et 
al., 2020).

In the following section, we provide some 

background on learning in the brain and in 
artificial neural networks. We then examine 
the implementational constraints imposed by 
neural hardware and why the backpropagation 
algorithm violates them. In response to these 
constraints, several learning algorithms, such 
as feedback alignment, target propagation, and 
equilibrium propagation, have been devised, 
each of which attempts to overcome some of the 
difficulties encountered by backprop. The major-
ity of this review consists of an analysis of these 
methods, including their successes and failures. 
Some of these successes are rather surprising 
and suggest that backprop-like algorithms are 
not as infeasible for the brain as previously 
thought. It is for this reason that we contend 
that the true function of the brain is likely simi-
lar in nature to backpropagation. 

BackgroundBackground
Learning in Brains: Synaptic Learning in Brains: Synaptic 
PlasticityPlasticity
Today, it is widely believed that learning in 

In this literature review, we examine several deep learning algorithms in the context of biological 
plausibility and, in turn, argue that a backprop-like algorithm is the most likely candidate for how 
learning operates in the brain. Although there are numerous difficulties in how the backpropa-
gation algorithm might be implemented in neural circuitry, we note that slight variations of the 
algorithm have been found to circumvent biological constraints and that seemingly unrelated 
algorithms can often be theoretically related to it. In particular, we examine the literature behind 
feedback alignment, target propagation, and equilibrium propagation, after giving some general 
background on learning in biology, AI, and their intersection. Ultimately, we acknowledge that 
there is no true consensus as to which learning algorithm the brain actually uses, but suspect that 
the answer is backprop-like in nature.

4 | The Cornell Undergraduate Research Journal



the brain happens at the synapses between 
neurons. This idea was first supported in 
experiments by Bliss and Lomo (1973) where 
they demonstrated that rapid stimulation 
of pre-synaptic neurons can lead to long-
term changes in the activity of post-synaptic 
neurons. However, while they presented a 
mechanism (long-term potentiation) for 
learning via synapses, the exact details of 
synaptic plasticity remain largely elusive 
today. Part of the reason for this is the sheer 
complexity of biochemical processes present 
at any synapse; it is well known that synaptic 
behavior can depend on countless proper-
ties of neurons’ vesicles, ion concentrations, 
receptors, proteins, and other structures.
 Another prominent, though not 
necessarily contradictory, theory of learning 
is that of Hebbian learning. Propounded by 
Donald Hebb (1949), the general principle 
is that neurons that spike together most 
frequently will result in stronger synaptic 
connections. Since its origin, this notion 
has matured into what is now known as 
spike-timing-dependent plasticity (STDP), 
which is supported by a body of work better 
detailing the relationship between synaptic 
strength and the relative timing of pre- and 
post-synaptic neuron firings (Markram et 
al., 2011). Though it has come to inspire 
some neural network models (with limited 
success), STDP seems more likely to be an 
emergent phenomenon than a fundamental 
learning rule (Shouval et al., 2010).
 Though synaptic plasticity represents 
the neuroscientific consensus with respect to 
learning in the brain, it is worth noting that 
there is some work challenging this idea or 
at least suggesting that it is incomplete. For 
instance, animals are able to perform one-
shot learning over time periods much longer 
than those dictated by STDP (Gallistel and 
Balsam, 2014) and researchers were able to 
induce long-term learning through epigen-
etic means (Bedecarrats et al., 2018). For 

the purposes of this review, however, the main 
takeaway from this section is that it is largely 
sufficient to think of the brain as a network of 
neurons that learn via synaptic changes and that 
this theory is well supported in the neuroscience 
literature from both old and recent experiments 
alike (Bliss and Lomo, 1973; Nabavi et al., 2014).

Learning in Artificial Neural Net-Learning in Artificial Neural Net-
works: The Backpropagation works: The Backpropagation 
AlgorithmAlgorithm

Whereas our knowledge of learning in the brain 
remains amorphous, there is one learning pro-
cedure that is ubiquitous in deep learning today: 
the backpropagation algorithm. Despite having 
traces in the early twentieth century, backprop-
agation first gained prominence in artificial 
intelligence when it was discussed in a paper 
by Rumelhart and Hinton (1986) as a means of 
training multi-layer perceptrons. The algorithm 
relies on the notion of automatic differentiation, 
in which the chain rule of calculus is used to 
differentiate along a computation graph (Millidge 
et al., 2020). Used in conjunction with iterative 
optimizers such as gradient descent, backprop 
gives a closed-form expression for the gradient of 
the loss function with respect to every weight in 
the network in terms of other weights and activa-
tions. In other words, gradient descent states that

 
and backpropagation uses the chain rule to ob-
tain a recursive definition for the derivative,

 
Here there are ‘k’ training examples and ‘l’ layers, 
and ‘z’ is simply the matrix-vector multiplica-
tion of each layer’s activations with its weight 
matrix. Moreover, the dotted circles represent 
element-wise multiplication and L is the loss 
function. Of particular importance for biological 
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plausibility is the delta term in the last layer 
of the network:

This is because it illustrates that the delta 
terms in fact correspond to error signals, 
where “error” is interpreted as the gradient 
of the loss function. In the case of a squared 
loss, for example, this quantity is the differ-
ence between the model’s prediction and the 
labeled target (Lillicrap et al., 2020). That is 
to say, backpropagation relays information 
about how different a model’s perception of 
the world is from reality.
 

Backpropagation’s Backpropagation’s 
Biological Biological 
IncompatibilityIncompatibility

While backpropagation has been extraodi-
narily successful in deep learning, there are 
several reasons why it is considered biologi-
cally implausible.

One major reason is that it is hard to come 
up with neural circuits that can implement 
the feedback computations specified by 
backpropagation. As can be seen in equation 
(4), backprop says that feedback error signals 
must be multiplied by the transpose of their 
layers’ weight matrix. Because feedback 
connections in the brain can either be imple-
mented by sending error signals back along 
the original network or by allocating a sepa-
rate feedback network, the requirement that 
error signals be multiplied by the transpose 
matrix gives rise to the weight symmetry and 
weight transport problems, respectively. Spe-
cifically, if error is propagated back along the 
feedforward network, then in order to imple-
ment backprop, the brain would have to 
enforce a synaptic weight matrix that is equal 

to its transpose, which is to say symmetric 
(Bengio et al., 2016; Lillicrap et al., 2016; 
Lillicrap et al., 2020; Whittington & Bogacz, 
2019). On the other hand, if the brain were 
to use separate feedback networks, then the 
weight transport problem addresses how the 
feedback synapses could possibly gain access 
to the strengths of the feedforward synaps-
es (because unlike in a computer, the brain 
can’t just copy the weights to some memory 
address) (Grossberg, 1987). 

Beyond the use of the transposed weight 
matrix, Bengio et al. (2016) note (as can be 
seen in equation (4)) that backpropagation 
also requires multiplication by the derivative 
of the activation function and that imple-
menting this computation biologically is 
non-trivial. More generally, activation func-
tions represent another source of biological 
constraint: neurons in the brain are known 
to fire discretely whereas the backpropaga-
tion algorithm, which contains derivative 
terms, benefits from continuous functions 
(Bengio et al., 2016; Whittington & Bogacz, 
2019). Indeed, the very fact that backprop-
agation communicates error signals with 
floating-point precision casts major doubt on 
its biological plausibility (Neftci et al., 2017).

Another contention is that backpropagation 
learning contains two temporally alternating 
phases: one for the forward pass and another 
for the backward pass (Neftci et al., 2017). 
Moreover, whereas the forward pass per-
forms nonlinear calculations, the equations 
of backpropagation are linear. This dispar-
ity would likely require distinct biological 
mechanisms that are unlikely to be found in 
the brain (Bengio et al., 2016). In addition, 
in deep learning, performing the backwards 
pass doesn’t influence the feedforward acti-
vations, though this does not seem to be the 
case in the brain (Lillicrap et al., 2020). Even 
more basic is the question of how the brain’s 
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neural networks could obtain targets or 
labels in order to compute the original error 
signal in the final layer.

Overall, many of the above restrictions 
stem from the simple principle of locality: 
that neurons in the brain can only interact 
with neighboring neurons (Whittington & 
Bogacz, 2019). As we will see, finding algo-
rithms that can learn while maintaining the 
physical proximity of interacting compo-
nents can go a long way towards obtaining 
biological plausibility. 

Feedback AlignmentFeedback Alignment

The method of feedback alignment offers to 
resolve many of the difficulties encountered 
in trying to implement backpropagation 
in the brain. The breakthrough paper for 
feedback alignment came in 2016 by Lilli-
crap et al. (2016). The main idea is that one 
can avoid the weight symmetry and weight 
transport problems by using a complete-
ly separate and unrelated weight matrix 
for feedback. In other words, the authors 
attempt to perform backpropagation but 
replace the transposed feedforward matrix 
with a random one. For the lth layer, call 
the random matrix Bl. Then equation (4) is 
transformed to 

In addition to feedback alignment, another 
method, termed direct feedback alignment 
was introduced by Arild Nøkland (2016). In 
this variation, the final error gets used as the 
one and only error signal for each layer. In 
other words, direct feedback alignment, in 
making yet another tweak to the equations 
for backpropagation, is able to remove the 
need to propagate error back through mul-
tiple layers of the network in the first place. 

Direct feedback alignment is described by

It is of note that both direct and indirect 
feedback alignment seem downright count-
er-intuitive. Indeed, the authors themselves 
acknowledge that their results are surpris-
ing. Why, one may wonder, should using a 
random matrix result in a performance that 
rivals the precisely computed gradients of 
traditional backprop? In short, as the authors 
prove, even though a random matrix is not 
the same as the feedforward transposed ma-
trix, it can still become aligned with it.

Figure 1: Diagram (a) depicts a feedforward 
neural network with the blue arrows representing 
the standard matrix-vector multiplication. Dia-
gram (b) portrays the backpropagation algorithm 
where error signals are sent back through the 
network. The arrows are blue to represent the 
fact that backpropagation makes use of the 
transpose of the feedforward weights. Diagram 
(c) displays feedback alignment. As can be 
seen, the ‘B’ matrices have no relation to the 
feedforward weights, but error signals are still 
propagated back through the network. Diagram 
(d) shows direct feedback alignment. Here the 
error found in the output layer is combined with 
random matrices to compute the weight updates 
for all prior layers.

One may also wonder what the purpose of 
direct feedback alignment is considering the 
relative success of indirect feedback align-
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ment. Arild Nøkland, the author of the direct 
feedback alignment paper, provides two rea-
sons. The first is that while feedback align-
ment demonstrated high performance on a 
variety of complex tasks, its success plum-
meted as it was applied to deeper networks. 
Direct feedback alignment, by contrast, does 
much better, even when used in networks as 
large as 100 layers.
The second advantage of direct feedback 
alignment is that it does not require error 
signals to be propagated through many 
layers. Accordingly, it can be implemented 
via local interactions, which alleviates many 
biological constraints. In fact, direct feed-
back alignment has an incredible degree of 
flexibility; as Nøkland notes, under direct 
feedback alignment, a neuron can receive 
its error signal from a post-synaptic neuron, 
from a reciprocally connected neuron, from 
a pre-synaptic neuron, or from any loca-
tion further upstream in the informational 
pathway.
In this sense, in spite of the fact that the 
specifics of the brain’s error propagation 
mechanism remain unknown, a range of 
possible alternatives are all compatible with 
direct feedback alignment. Still, as Nøkland 
remarks, this is far from saying that direct 
feedback alignment is the exact learning 
algorithm employed by the brain; there is a 
lot that simply remains unknown, though 
direct feedback alignment is a step in the 
right direction.

Target PropagationTarget Propagation
Pioneered by Yoshua Bengio (2014) and 
Yann LeCun (1986), target propagation is a 
method that uses auto-encoders to facilitate 
local feedback connections. Auto-encoders 
are unsupervised models that seek to predict 
their own input and will often have a hidden 
layer of reduced dimension. In target prop-
agation, auto-encoders are stacked atop one 

another in parallel to the main network. In 
short, if an auto-encoder can be trained to 
act like an inverse function, then the labeled 
targets can be propagated back through the 
auto-encoders, forming “hidden” targets to 
be compared to the hidden activations. By 
taking the difference between these “hidden” 
targets and their corresponding activations, 
one arrives at a local form of error that can 
be used to direct learning in the network 
(Lillicrap et al., 2020).

Figure 2: Target propagation utilizes auto-encod-
ers to generate feedback that doesn’t involve 
any gradient computations. It does this by 
propagating the labeled targets back through a 
series of operations that approximately invert the 
forward operations of the network. In this sense, 
a specialized target (in blue) is created for each 
hidden activation (in red), the effect of which is a 
feedback mechanism that is local in nature. For 
each layer in Figure 2, the error is given by the 
difference between the activations (in red) and 
the “hidden” targets (in blue). This error value 
can be used to nudge a given layer’s synapses 
in a way that facilitates learning. Unlike a gra-
dient, subtraction is a computation that can be 
more easily implemented biologically.

For some time, the main problem with tar-
get propagation was the inability to obtain 
auto-encoders that act as perfect inverses 
without resorting to backpropagation. This, 
however, was solved by difference target 
propagation (Lee et al., 2015), which is a 
simple linear correction to target propaga-
tion that is achieved by turning the network 
itself into a stack of autoencoders. For a 
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more in-depth explanation of difference 
target propagation, we direct our readers to 
Lillicrap et al. (2020).

As it turns out, difference target propaga-
tion performs decently on a variety of tasks 
and in many cases approaches the results of 
backpropagation (Lee et al., 2015). It there-
fore makes a formidable case for a biologi-
cally plausible learning algorithm. In terms 
of how it could be implemented by the brain, 
there are two main options; one would be 
to allocate a separate feedback network, in 
which the auto-encoders live. Again, this is a 
questionable hypothesis within neuroscience 
(Stork, 1989).
 Another possibility is that all the var-
ious targets, activations, and reconstructions 
for a node dwell within a single neuron. 
This idea derives from recent research that 
neurons possess numerous spatial compart-
ments that can perform far more nuanced 
calculations than the simplified model of the 
point-particle neuron would suggest (Körd-
ing & König, 2001; Urbanczik & Senn, 2014; 
Naud & Sprekeler, 2018). Ultimately, though, 
even if it cannot be implemented in neu-
ral circuitry, difference target propagation 
demonstrates how relatively mild architec-
tural modifications can make backprop-like 
algorithms comply with many more biologi-
cal constraints than originally thought.

Equilibrium Propagation Equilibrium Propagation 
 Another prominent biologically plau-
sible algorithm is equilibrium propagation. 
It was introduced by Scellier and Bengio 
(2017) and uses an energy function to train 
a Hopfield model. More specifically, they de-
fine an “energy function” E, a “cost function” 
C, and a “total energy function” F as follows

By varying the “clamping factor,”  , one 
is able to influence the effect that the cost 
function has on the system. In fact, equi-
librium propagation occurs in two phases. 
In the “free phase,” =0 and the system 
is allowed to establish equilibrium. In the 
second, “weakly clamped phase,” >0 and 
the system is again allowed to settle to equi-
librium. Because the potential energy will 
exert a force on the state of the system, the 
weights within the network will be nudged 
in a meaningful direction and moreover, in a 
local manner. In this way, learning is able to 
take place, even as equilibrium propagation 
offers an entirely new framework for think-
ing about the system.

The dynamical systems framework also 
results in behavior that deeply resembles 
that of spike-timing-dependent plasticity. 
At this point, one would think that equi-
librium propagation is largely unrelated to 
backpropagation; interestingly, however, 
it can be shown that equilibrium propaga-
tion approximates the gradients computed 
in backpropagation-through-time. Unlike 
backprop, though, equilibrium propagation 
only requires one type of computation and 
one neural circuit.

But while it may check many of the boxes of 
biological plausibility, equilibrium propaga-
tion still requires two phases, which alternate 
temporally. As for performance, the original 
equilibrium propagation algorithm present-
ed by Scellier and Bengio was not all that 
impressive, although recent work has added 
slight modifications that enable more com-
petitive accuracy (Laborieux et al., 2021).

ConclusionsConclusions
 Having reviewed three major at-
tempts at enforcing biologically plausibility 
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in deep learning, we now take a moment to 
reflect on some general trends.
 For one, it is astonishing how rela-
tively minor tweaks to existing algorithms 
have resulted in major progress toward 
biological plausibility: going from feedback 
alignment to direct feedback alignment 
enabled local connectivity and dramatically 
improved performance in deeper networks; 
going from target propagation to difference 
target propagation allowed for the natural 
approximation of inverse functions; modi-
fying the architecture marginally in equilib-
rium propagation resulted in major perfor-
mance boosts (Laborieux et al., 2021).
 It is moreover curious just how 
rudimentary many of these tweaks were at 
heart. Feedback alignment simply fixed a 
variable in the equations for backprop; direct 
feedback alignment merely fixed a different 
quantity. The central insight of target prop-
agation was to substitute gradient compu-
tations for auto-encoders; difference target 
propagation simply added more auto-encod-
ers in different places. Equilibrium propa-
gation, while a less trivial modification to 
backprop, was itself enhanced tremendously 
by a comparably trivial design alteration. All 
this is in spite of the fact that many of these 
adjustments addressed problems that were 
previously considered to be unyielding.
 In this sense, we suspect that the 
learning algorithm actually employed by the 
brain is indeed rather similar to backprop-
agation. It is, after all, the starting point of 
many of the other algorithms. Additional-
ly, even for algorithms that initially seem 
unrelated to backprop, such as equilibrium 
propagation, it is almost always the case that 
they can be related mathematically to it (Lil-
licrap et al., 2020). Furthermore, backprop 
is universally accepted as the algorithm with 
the best performance, and one would imag-
ine that natural selection would favor such 
efficacy in humans.

 It is worth acknowledging that, in 
spite of these suspicions, the brain’s true 
learning algorithm remains utterly unknown 
(Stork, 1989). Nevertheless, after considering 
a sizable number of algorithms, we can say 
that the general idea behind backprop, which 
is that computed error signals inform the up-
date of synaptic strengths, is almost certainly 
the basic mechanism that allows the brain to 
learn. One can only wonder, then, what oth-
er tweaks to the backpropagation algorithm 
might exist out there; perhaps at the core of 
human cognition lays something surprising-
ly simple.
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